|
import hashlib |
|
import json |
|
import requests |
|
import time |
|
import numpy as np |
|
import threading |
|
import logging |
|
import yaml |
|
from web3 import Web3 |
|
from bayes_opt import BayesianOptimization |
|
from deap import base, creator, tools |
|
import smtplib |
|
from email.mime.text import MIMEText |
|
|
|
|
|
logging.basicConfig(filename='shib_miner.log', level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
|
|
def send_email(subject, body): |
|
"""Send email notifications.""" |
|
sender_email = "[email protected]" |
|
receiver_email = "[email protected]" |
|
password = "your_email_password" |
|
|
|
msg = MIMEText(body) |
|
msg['Subject'] = subject |
|
msg['From'] = sender_email |
|
msg['To'] = receiver_email |
|
|
|
with smtplib.SMTP('smtp.gmail.com', 587) as server: |
|
server.starttls() |
|
server.login(sender_email, password) |
|
server.send_message(msg) |
|
logging.info("Notification email sent.") |
|
|
|
|
|
class ShibMiner: |
|
def __init__(self, wallet_address, mining_pool_url, eth_provider_url, config): |
|
self.wallet_address = wallet_address |
|
self.mining_pool_url = mining_pool_url |
|
self.web3 = Web3(Web3.HTTPProvider(eth_provider_url)) |
|
self.difficulty = None |
|
self.nonce = 0 |
|
self.best_solution = None |
|
self.hash_rates = [] |
|
self.max_threads = config['max_threads'] |
|
self.thread_lock = threading.Lock() |
|
|
|
def get_pool_data(self): |
|
"""Fetch pool data including difficulty.""" |
|
try: |
|
response = requests.get(f'{self.mining_pool_url}/getDifficulty') |
|
if response.status_code == 200: |
|
self.difficulty = response.json()['difficulty'] |
|
logging.info(f"Retrieved difficulty: {self.difficulty}") |
|
else: |
|
logging.error("Could not retrieve pool data") |
|
except Exception as e: |
|
logging.error(f"Error fetching pool data: {e}") |
|
|
|
def sha256(self, data): |
|
return hashlib.sha256(data.encode('utf-8')).hexdigest() |
|
|
|
def mine(self): |
|
"""Start the mining process.""" |
|
self.get_pool_data() |
|
block_data = f"{self.wallet_address}" |
|
|
|
while True: |
|
with self.thread_lock: |
|
block_hash = self.sha256(f"{block_data}{self.nonce}") |
|
if int(block_hash, 16) < self.difficulty: |
|
logging.info(f'Mined a block: {block_hash} with nonce: {self.nonce}') |
|
self.submit_work(block_hash, self.nonce) |
|
break |
|
self.nonce += 1 |
|
|
|
def submit_work(self, block_hash, nonce): |
|
"""Submit mined work to the pool.""" |
|
payload = { |
|
'wallet': self.wallet_address, |
|
'blockHash': block_hash, |
|
'nonce': nonce, |
|
} |
|
try: |
|
response = requests.post(f'{self.mining_pool_url}/submitWork', json=payload) |
|
if response.status_code == 200: |
|
logging.info("Work submitted successfully.") |
|
send_email("Mining Success", f"Successfully mined block: {block_hash}") |
|
else: |
|
logging.error(f"Error submitting work: {response.json()}") |
|
|
|
self.retry_submission(payload) |
|
except Exception as e: |
|
logging.error(f"Error submitting work: {e}") |
|
|
|
def retry_submission(self, payload, attempts=3): |
|
"""Retry submission of mined work.""" |
|
for attempt in range(attempts): |
|
try: |
|
response = requests.post(f'{self.mining_pool_url}/submitWork', json=payload) |
|
if response.status_code == 200: |
|
logging.info("Work submitted successfully on retry.") |
|
send_email("Mining Success", f"Successfully mined block on retry: {payload['blockHash']}") |
|
return |
|
except Exception as e: |
|
logging.error(f"Retry attempt {attempt + 1} failed: {e}") |
|
time.sleep(5) |
|
logging.error("All retry attempts failed.") |
|
|
|
def optimize_parameters(self, iterations=10): |
|
"""Optimize mining parameters using Bayesian Optimization.""" |
|
def black_box_function(param1, param2): |
|
|
|
return np.sin(param1) * np.cos(param2) + 0.5 |
|
|
|
pbounds = {'param1': (0, 10), 'param2': (0, 10)} |
|
optimizer = BayesianOptimization( |
|
f=black_box_function, |
|
pbounds=pbounds, |
|
random_state=1, |
|
) |
|
optimizer.maximize(init_points=5, n_iter=iterations) |
|
|
|
|
|
self.best_solution = optimizer.max |
|
logging.info("Best parameters from Bayesian Optimization: %s", self.best_solution) |
|
|
|
def genetic_algorithm(self, iterations=10): |
|
"""Optimize using a Genetic Algorithm.""" |
|
creator.create("FitnessMax", base.Fitness, weights=(1.0,)) |
|
creator.create("Individual", list, fitness=creator.FitnessMax) |
|
|
|
toolbox = base.Toolbox() |
|
toolbox.register("attr_float", np.random.uniform, 0, 10) |
|
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2) |
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual) |
|
|
|
def eval_individual(individual): |
|
return (np.sin(individual[0]) * np.cos(individual[1]) + 0.5,) |
|
|
|
toolbox.register("evaluate", eval_individual) |
|
toolbox.register("mate", tools.cxBlend, alpha=0.5) |
|
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) |
|
toolbox.register("select", tools.selTournament, tournsize=3) |
|
|
|
population = toolbox.population(n=50) |
|
for gen in range(iterations): |
|
offspring = toolbox.select(population, len(population)) |
|
offspring = list(map(toolbox.clone, offspring)) |
|
|
|
for child1, child2 in zip(offspring[::2], offspring[1::2]): |
|
if np.random.rand() < 0.5: |
|
toolbox.mate(child1, child2) |
|
del child1.fitness.values |
|
del child2.fitness.values |
|
|
|
for mutant in offspring: |
|
if np.random.rand() < 0.2: |
|
toolbox.mutate(mutant) |
|
del mutant.fitness.values |
|
|
|
invalid_ind = [ind for ind in offspring if not ind.fitness.valid] |
|
fitnesses = map(toolbox.evaluate, invalid_ind) |
|
for ind, fit in zip(invalid_ind, fitnesses): |
|
ind.fitness.values = fit |
|
|
|
population[:] = offspring |
|
|
|
fits = [ind.fitness.values[0] for ind in population] |
|
self.best_solution = population[np.argmax(fits)] |
|
logging.info("Best parameters from Genetic Algorithm: %s", self.best_solution) |
|
|
|
def trinary_qubit_optimization(self): |
|
"""Simulated Trinary Qubit Optimization.""" |
|
|
|
qubits = [np.random.choice([0, 1, 2]) for _ in range(10)] |
|
logging.info("Simulated Trinary Qubits: %s", qubits) |
|
|
|
def start_mining_threads(self): |
|
"""Start multiple mining threads.""" |
|
threads = [] |
|
for _ in range(self.max_threads): |
|
thread = threading.Thread(target=self.mine) |
|
thread.start() |
|
threads.append(thread) |
|
|
|
for thread in threads: |
|
thread.join() |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
wallet_address = config['wallet_address'] |
|
mining_pool_url = config['mining_pool_url'] |
|
eth_provider_url = config['eth_provider_url'] |
|
|
|
miner = ShibMiner(wallet_address, mining_pool_url, eth_provider_url, config) |
|
|
|
|
|
miner.optimize_parameters(iterations=config['bayesian_iterations']) |
|
miner.genetic_algorithm(iterations=config['ga_iterations']) |
|
miner.trinary_qubit_optimization() |
|
|
|
|
|
miner.start_mining_threads() |