AmanSengar's picture
Create README.md
a9dce72 verified
# 🧠 Beans-Image-Classification-AI-Model
A fine-tuned image classification model trained on the Beans dataset with 3 classes: angular_leaf_spot, bean_rust, and healthy. This model is built using Hugging Face Transformers and the ViT (Vision Transformer) architecture and is suitable for educational use, plant disease classification tasks, and image classification experiments.
---
## ✨ Model Highlights
- πŸ“Œ Base Model: google/vit-base-patch16-224-in21k
- πŸ“š Fine-tuned: Beans dataset
- 🌿 Classes: angular_leaf_spot, bean_rust, healthy
- πŸ”§ Framework: Hugging Face Transformers + PyTorch
- πŸ“¦ Preprocessing: AutoImageProcessor from Transformers
---
## 🧠 Intended Uses
- βœ… Educational tools for training and evaluation in agriculture and plant disease detection
- βœ… Benchmarking vision transformer models on small datasets
- βœ… Demonstration of fine-tuning workflows with Hugging Face
---
## 🚫 Limitations
- ❌ Not suitable for real-world diagnosis in agriculture without further domain validation
- ❌ Not robust to significant background noise or occlusion in images
- ❌ Trained on small dataset, may not generalize beyond bean leaf diseases
---
πŸ“ Input & Output
- Input: RGB image of a bean leaf (expected size 224x224)
- Output: Predicted class label β€” angular_leaf_spot, bean_rust, or healthy
---
## πŸ‹οΈβ€β™‚οΈ Training Details
| Attribute | Value |
|--------------------|----------------------------------|
| Base Model |`google/vit-base-patch16-224-in21k|
| Dataset |Beans Dataset (train/val/test) |
| Task Type | Image Classification |
| Image Size | 224 Γ— 224 |
| Epochs | 3 |
| Batch Size | 16 |
| Optimizer | AdamW |
| Loss Function | CrossEntropyLoss |
| Framework | PyTorch + Transformers |
| Hardware | CUDA-enabled GPU |
---
## πŸ“Š Evaluation Metrics
| Metric | Score |
| ----------------------------------------------- | ----- |
| Accuracy | 0.98 |
| F1-Score | 0.99 |
| Precision | 0.98 |
| Recall | 0.99 |
---
---
πŸš€ Usage
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
model_name = "AventIQ-AI/Beans-Image-Classification-AI-Model"
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
model.eval()
def predict(image_path):
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
preds = torch.argmax(outputs.logits, dim=1)
return model.config.id2label[preds.item()]
# Example
print(predict("example_leaf.jpg"))
```
---
- 🧩 Quantization
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
----
πŸ—‚ Repository Structure
```
.
beans-vit-finetuned/
β”œβ”€β”€ config.json βœ… Model architecture & config
β”œβ”€β”€ pytorch_model.bin βœ… Model weights
β”œβ”€β”€ preprocessor_config.json βœ… Image processor config
β”œβ”€β”€ special_tokens_map.json βœ… (Auto-generated, not critical for ViT)
β”œβ”€β”€ training_args.bin βœ… Training metadata
β”œβ”€β”€ README.md βœ… Model card
```
---
🀝 Contributing
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.