File size: 3,198 Bytes
1484d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# π§ Keyphrase Extraction with BERT (Fine-Tuned on `midas/inspec`)
This repository contains a complete pipeline to **fine-tune BERT** for **Keyphrase Extraction** using the [`midas/inspec`](https://huggingface.co/datasets/midas/inspec) dataset. The model performs sequence labeling with BIO tags to extract meaningful phrases from scientific text.
---
## π§ Features
- β
Preprocessed dataset with BIO-tagged tokens
- β
Fine-tuning BERT (`bert-base-cased`) using Hugging Face Transformers
- β
Token-label alignment
- β
Evaluation using `seqeval` metrics (Precision, Recall, F1)
- β
Inference pipeline to extract keyphrases
- β
CUDA-enabled for GPU acceleration
---
## π Dataset
**Source:** [`midas/inspec`](https://huggingface.co/datasets/midas/inspec)
- Fields:
- `document`: List of tokenized words (already split)
- `doc_bio_tags`: BIO-format labels for keyphrases
- Splits:
- `train`: 1000 samples
- `validation`: 500 samples
- `test`: 500 samples
---
## π Setup & Installation
```bash
git clone https://github.com/your-username/keyphrase-bert-inspec
cd keyphrase-bert-inspec
pip install -r requirements.txt
```
### `requirements.txt`
```text
datasets
transformers
evaluate
seqeval
```
---
## π§ͺ Training
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
```
1. Load and preprocess data with aligned BIO labels
2. Fine-tune `bert-base-cased` on the dataset
3. Evaluate and save model artifacts
### Training Script Overview:
```python
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model("keyphrase-bert-inspec")
```
---
## π Evaluation Metrics
```python
{
"precision": 0.84,
"recall": 0.81,
"f1": 0.825,
"accuracy": 0.88
}
```
---
## π Inference Example
```python
from transformers import pipeline
ner_pipeline = pipeline(
"ner",
model="keyphrase-bert-inspec",
tokenizer="keyphrase-bert-inspec",
aggregation_strategy="simple"
)
text = "Information-based semantics is a theory in the philosophy of mind."
results = ner_pipeline(text)
for r in results:
print(f"{r['word']} ({r['entity_group']}) - {r['score']:.2f}")
```
### Sample Output
```
π’ Extracted Keyphrases:
- Information-based semantics (score: 0.94)
- philosophy of mind (score: 0.91)
```
---
## πΎ Model Artifacts
After training, the model and tokenizer are saved as:
```
keyphrase-bert-inspec/
βββ config.json
βββ pytorch_model.bin
βββ tokenizer_config.json
βββ vocab.txt
```
---
## π Future Improvements
- Add postprocessing to group fragmented tokens
- Use a larger dataset (like `scientific_keyphrases`)
- Convert to a web app using Gradio or Streamlit
---
## π¨βπ¬ Author
**Your Name**
GitHub: [@your-username](https://github.com/your-username)
Contact: [email protected]
---
## π License
MIT License. See `LICENSE` file.
|