File size: 3,563 Bytes
4405582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
**π§ SMSDetection-DistilBERT-SMS**
A DistilBERT-based binary classifier fine-tuned on the SMS Spam Collection dataset. It classifies messages as either **spam** or **ham** (not spam). This model is suitable for real-world applications like mobile SMS spam filters, automated customer message triage, and telecom fraud detection.
---
β¨ **Model Highlights**
- π Based on `distilbert-base-uncased`
- π Fine-tuned on the SMS Spam Collection dataset
- β‘ Supports binary classification: Spam vs Not Spam
- πΎ Lightweight and optimized for both CPU and GPU environments
---
π§ Intended Uses
- β
Mobile SMS spam filtering
- β
Telecom customer service automation
- β
Fraudulent message detection
- β
User inbox categorization
- β
Regulatory compliance monitoring
---
- π« Limitations
- β Trained on English SMS messages only
- β May underperform on emails, social media texts, or non-English content
- β Not designed for multilingual datasets
- β Slight performance dip expected for long messages (>128 tokens)
---
ποΈββοΈ Training Details
| Field | Value |
| -------------- | ------------------------------ |
| **Base Model** | `distilbert-base-uncased` |
| **Dataset** |SMS Spam Collection (UCI) |
| **Framework** | PyTorch with π€ Transformers |
| **Epochs** | 3 |
| **Batch Size** | 16 |
| **Max Length** | 128 tokens |
| **Optimizer** | AdamW |
| **Loss** | CrossEntropyLoss (token-level) |
| **Device** | Trained on CUDA-enabled GPU |
---
π Evaluation Metrics
| Metric | Score |
| ----------------------------------------------- | ----- |
| Accuracy | 0.99 |
| F1-Score | 0.96 |
| Precision | 0.98 |
| Recall | 0.93 |
---
---
π Usage
```python
from transformers import BertTokenizerFast, BertForTokenClassification
from transformers import pipeline
import torch
model_name = "AventIQ-AI/SMS-Spam-Detection-Model"
tokenizer = BertTokenizerFast.from_pretrained(model_name)
model = BertForTokenClassification.from_pretrained(model_name)
model.eval()
# Inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def predict_sms(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted = torch.argmax(logits, dim=1).item()
return "spam" if predicted == 1 else "ham"
# Test example
print(predict_sms("You've won $1,000,000! Call now to claim your prize!"))
```
---
- π§© Quantization
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
----
π Repository Structure
```
.
βββ model/ # Quantized model files
βββ tokenizer_config/ # Tokenizer and vocab files
βββ model.safensors/ # Fine-tuned model in safetensors format
βββ README.md # Model card
```
---
π€ Contributing
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.
|