File size: 3,626 Bytes
2573acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# πŸ“„ Contract Sentiment Classifier (BERT)

A fine-tuned BERT model for contract sentiment analysis, classifying legal or contractual text into positive, negative, or neutral sentiments.


## 🧠 Model Details

- πŸ“Œ**Base Model**: bert-base-uncased
- πŸ”§**Task**: Sentiment Classification (Contractual Text)
- πŸ” **Labels**: `Negative (0)`, `Neutral (1)`, `Positive (2)`
- πŸ’Ύ **Quantized version available**: for faster inference
- 🧠 **Framework**: PyTorch, Transformers (πŸ€— Hugging Face)




## 🧠 Intended Uses

- βœ… Classifying product feedback and user reviews
- βœ… Sentiment analysis for e-commerce platforms
- βœ… Social media monitoring and customer opinion mining

---

## 🚫 Limitations

- ❌ Designed for English texts only
- ❌Needs further tuning and evaluation on larger, diverse contract.
- ❌ Not suitable for production use without robustness checks.

---

## πŸ‹οΈβ€β™‚οΈ Training Details

- **Base Model**: `bert-base-uncased`
- **Dataset**: Custom labeled Contract Sentiment dataset
- **Epochs**: 3
- **Batch Size**: 5
- **Learning rate**: AdamW
- **Hardware**: Trained on NVIDIA GPU (CUDA-enabled)

---

## πŸ“Š Evaluation Metrics

| Metric     | Score |
|------------|-------|
| Accuracy   | 0.98  |
| F1         | 0.99  |
| Precision  | 0.99  |
| Recall     | 0.97  |

---

## πŸ”Ž Label Mapping

| Label ID | Sentiment |
|----------|-----------|
| 0        | Negative  |
| 1        | Neutral   |
| 2        | Positive  |

---

## πŸš€ Usage Example

```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import torch
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset
import torch.nn.functional as F

# Load model and tokenizer
model_name = "AventIQ-AI/Sentiment-Analysis-for-Contract-Sentiment"
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=3)
model.eval()

def tokenize_function(examples):
    return tokenizer(examples['text'], padding='max_length', truncation=True)


# Inference
def predict_sentiment(user_text):
    # Ensure input is a list for batch processing
    if isinstance(user_text, str):
        user_text = [user_text]

    # Tokenize input text
    inputs = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True)

    # Predict using the model
    with torch.no_grad():
        outputs = model(**inputs)
    preds = torch.argmax(outputs.logits, dim=1)

    # Decode predictions back to original sentiment labels
    decoded_preds = label_encoder.inverse_transform(preds.numpy())

    # Print each prediction
    for text, sentiment in zip(user_text, decoded_preds):
        print(f"Text: '{text}' => Sentiment: {sentiment}")


# Example
predict_sentiment("The delivery scheduled")
```

---

## πŸ§ͺ Quantization

- Applied **post-training dynamic quantization** using PyTorch to reduce model size and speed up inference.
- Quantized model supports CPU-based deployments.

---

## πŸ“ Repository Structure

```
.
β”œβ”€β”€ model/               # Quantized model files
β”œβ”€β”€ tokenizer/           # Tokenizer config and vocabulary
β”œβ”€β”€ model.safetensors/   # Fine-tuned full-precision model
β”œβ”€β”€ README.md            # Model documentation
```

---



## 🀝 Contributing

We welcome contributions! Please feel free to raise an issue or submit a pull request if you find a bug or have a suggestion.