Update README.md
Browse files
README.md
CHANGED
@@ -34,15 +34,15 @@ T5ForConditionalGeneration(
|
|
34 |
)
|
35 |
(lm_head): Linear(in_features=768, out_features=32100, bias=False)
|
36 |
)
|
37 |
-
```
|
38 |
|
|
|
39 |
pip install -U transformers torch datasets
|
40 |
-
Then, load the model and run inference:
|
41 |
-
|
42 |
```
|
43 |
from transformers import T5ForConditionalGeneration, RobertaTokenizer
|
44 |
|
45 |
-
# Download from the 🤗 Hub
|
|
|
46 |
model_name = "your-username/codet5-conala-comments" # Update with your HF model ID
|
47 |
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
48 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
@@ -65,8 +65,8 @@ comment = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
65 |
print(f"Code: {code_snippet}")
|
66 |
print(f"Comment: {comment}")
|
67 |
# Expected output: Something close to "Concatenate elements of a list 'x' of multiple integers to a single integer"
|
68 |
-
|
69 |
```
|
|
|
70 |
# Training Details
|
71 |
Training Dataset
|
72 |
**Name:** janrauhl/conala
|
@@ -99,13 +99,3 @@ Non-Default Hyperparameters:
|
|
99 |
**learning_rate:** 1e-4
|
100 |
**fp16:** True
|
101 |
|
102 |
-
```
|
103 |
-
@article{wang2021codet5,
|
104 |
-
title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation},
|
105 |
-
author={Wang, Yue and Wang, Weishi and Joty, Shafiq and Hoi, Steven C. H.},
|
106 |
-
journal={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
|
107 |
-
year={2021},
|
108 |
-
url={https://arxiv.org/abs/2109.00859}
|
109 |
-
}
|
110 |
-
|
111 |
-
```
|
|
|
34 |
)
|
35 |
(lm_head): Linear(in_features=768, out_features=32100, bias=False)
|
36 |
)
|
|
|
37 |
|
38 |
+
```bash
|
39 |
pip install -U transformers torch datasets
|
40 |
+
#Then, load the model and run inference:
|
|
|
41 |
```
|
42 |
from transformers import T5ForConditionalGeneration, RobertaTokenizer
|
43 |
|
44 |
+
# Download from the 🤗 Hub
|
45 |
+
```python
|
46 |
model_name = "your-username/codet5-conala-comments" # Update with your HF model ID
|
47 |
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
48 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
65 |
print(f"Code: {code_snippet}")
|
66 |
print(f"Comment: {comment}")
|
67 |
# Expected output: Something close to "Concatenate elements of a list 'x' of multiple integers to a single integer"
|
|
|
68 |
```
|
69 |
+
|
70 |
# Training Details
|
71 |
Training Dataset
|
72 |
**Name:** janrauhl/conala
|
|
|
99 |
**learning_rate:** 1e-4
|
100 |
**fp16:** True
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|