cedricbonhomme commited on
Commit
5bb7783
·
verified ·
1 Parent(s): 7b79213

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -16
README.md CHANGED
@@ -1,37 +1,52 @@
1
  ---
 
 
 
2
  library_name: transformers
3
  license: apache-2.0
4
- base_model: hfl/chinese-macbert-base
5
- tags:
6
- - generated_from_trainer
7
  metrics:
8
  - accuracy
 
 
 
 
 
 
 
 
 
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # vulnerability-severity-classification-chinese-macbert-base
 
 
18
 
19
- This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.6044
22
- - Accuracy: 0.7745
23
 
24
- ## Model description
25
 
26
- More information needed
27
 
28
- ## Intended uses & limitations
 
29
 
30
- More information needed
 
 
 
 
 
 
 
 
 
 
31
 
32
- ## Training and evaluation data
33
 
34
- More information needed
35
 
36
  ## Training procedure
37
 
@@ -46,6 +61,10 @@ The following hyperparameters were used during training:
46
  - lr_scheduler_type: linear
47
  - num_epochs: 5
48
 
 
 
 
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
 
1
  ---
2
+ base_model: hfl/chinese-macbert-base
3
+ datasets:
4
+ - CIRCL/Vulnerability-CNVD
5
  library_name: transformers
6
  license: apache-2.0
 
 
 
7
  metrics:
8
  - accuracy
9
+ tags:
10
+ - generated_from_trainer
11
+ - text-classification
12
+ - classification
13
+ - nlp
14
+ - chinese
15
+ - vulnerability
16
+ pipeline_tag: text-classification
17
+ language: zh
18
  model-index:
19
  - name: vulnerability-severity-classification-chinese-macbert-base
20
  results: []
21
  ---
22
 
23
+ # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
 
24
 
25
+ This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
26
+
27
+ For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
28
 
 
 
 
 
29
 
30
+ ## How to use
31
 
32
+ You can use this model directly with the Hugging Face `transformers` library for text classification:
33
 
34
+ ```python
35
+ from transformers import pipeline
36
 
37
+ classifier = pipeline(
38
+ "text-classification",
39
+ model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
40
+ )
41
+
42
+ # Example usage for a Chinese vulnerability description
43
+ description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
44
+ result_chinese = classifier(description_chinese)
45
+ print(result_chinese)
46
+ # Expected output example: [{'label': '高', 'score': 0.9802}]
47
+ ```
48
 
 
49
 
 
50
 
51
  ## Training procedure
52
 
 
61
  - lr_scheduler_type: linear
62
  - num_epochs: 5
63
 
64
+ It achieves the following results on the evaluation set:
65
+ - Loss: 0.6044
66
+ - Accuracy: 0.7745
67
+
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |