|
from torch import nn |
|
from .modules import * |
|
import pdb |
|
|
|
class ConvLayer(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, padding, dilation): |
|
super(ConvLayer, self).__init__() |
|
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class DilatedCNN(nn.Module): |
|
def __init__(self, d_model, d_hidden): |
|
super(DilatedCNN, self).__init__() |
|
self.first_ = nn.ModuleList() |
|
self.second_ = nn.ModuleList() |
|
self.third_ = nn.ModuleList() |
|
|
|
dilation_tuple = (1, 2, 3) |
|
dim_in_tuple = (d_model, d_hidden, d_hidden) |
|
dim_out_tuple = (d_hidden, d_hidden, d_hidden) |
|
|
|
for i, dilation_rate in enumerate(dilation_tuple): |
|
self.first_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=3, padding=dilation_rate, |
|
dilation=dilation_rate)) |
|
|
|
for i, dilation_rate in enumerate(dilation_tuple): |
|
self.second_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=5, padding=2*dilation_rate, |
|
dilation=dilation_rate)) |
|
|
|
for i, dilation_rate in enumerate(dilation_tuple): |
|
self.third_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=7, padding=3*dilation_rate, |
|
dilation=dilation_rate)) |
|
|
|
def forward(self, protein_seq_enc): |
|
|
|
protein_seq_enc = protein_seq_enc.transpose(1, 2) |
|
|
|
first_embedding = protein_seq_enc |
|
second_embedding = protein_seq_enc |
|
third_embedding = protein_seq_enc |
|
|
|
for i in range(len(self.first_)): |
|
first_embedding = self.first_[i](first_embedding) |
|
|
|
for i in range(len(self.second_)): |
|
second_embedding = self.second_[i](second_embedding) |
|
|
|
for i in range(len(self.third_)): |
|
third_embedding = self.third_[i](third_embedding) |
|
|
|
|
|
|
|
protein_seq_enc = first_embedding + second_embedding + third_embedding |
|
|
|
return protein_seq_enc.transpose(1, 2) |
|
|
|
|
|
class ReciprocalLayerwithCNN(nn.Module): |
|
|
|
def __init__(self, d_model, d_inner, d_hidden, n_head, d_k, d_v): |
|
super().__init__() |
|
|
|
self.cnn = DilatedCNN(d_model, d_hidden) |
|
|
|
self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden, |
|
d_k, d_v) |
|
|
|
self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden, |
|
d_k, d_v) |
|
|
|
self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_hidden, |
|
d_k, d_v) |
|
|
|
self.ffn_seq = FFN(d_hidden, d_inner) |
|
|
|
self.ffn_protein = FFN(d_hidden, d_inner) |
|
|
|
def forward(self, sequence_enc, protein_seq_enc): |
|
|
|
protein_seq_enc = self.cnn(protein_seq_enc) |
|
prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc) |
|
|
|
seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc) |
|
|
|
prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc, |
|
seq_enc, |
|
seq_enc, |
|
prot_enc) |
|
prot_enc = self.ffn_protein(prot_enc) |
|
|
|
seq_enc = self.ffn_seq(seq_enc) |
|
|
|
return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention |
|
|
|
|
|
class ReciprocalLayer(nn.Module): |
|
|
|
def __init__(self, d_model, d_inner, n_head, d_k, d_v): |
|
|
|
super().__init__() |
|
|
|
self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_model, |
|
d_k, d_v) |
|
|
|
self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_model, |
|
d_k, d_v) |
|
|
|
self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_model, |
|
d_k, d_v) |
|
|
|
|
|
|
|
self.ffn_seq = FFN(d_model, d_inner) |
|
|
|
self.ffn_protein = FFN(d_model, d_inner) |
|
|
|
def forward(self, sequence_enc, protein_seq_enc): |
|
prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc) |
|
|
|
seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc) |
|
|
|
|
|
prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc, |
|
seq_enc, |
|
seq_enc, |
|
prot_enc) |
|
prot_enc = self.ffn_protein(prot_enc) |
|
|
|
seq_enc = self.ffn_seq(seq_enc) |
|
|
|
|
|
|
|
return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention |
|
|
|
|
|
|
|
|