AlienChen's picture
Upload 139 files
65bd8af verified
from torch import nn
from .modules import *
import pdb
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding, dilation):
super(ConvLayer, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv(x)
out = self.relu(out)
return out
class DilatedCNN(nn.Module):
def __init__(self, d_model, d_hidden):
super(DilatedCNN, self).__init__()
self.first_ = nn.ModuleList()
self.second_ = nn.ModuleList()
self.third_ = nn.ModuleList()
dilation_tuple = (1, 2, 3)
dim_in_tuple = (d_model, d_hidden, d_hidden)
dim_out_tuple = (d_hidden, d_hidden, d_hidden)
for i, dilation_rate in enumerate(dilation_tuple):
self.first_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=3, padding=dilation_rate,
dilation=dilation_rate))
for i, dilation_rate in enumerate(dilation_tuple):
self.second_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=5, padding=2*dilation_rate,
dilation=dilation_rate))
for i, dilation_rate in enumerate(dilation_tuple):
self.third_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=7, padding=3*dilation_rate,
dilation=dilation_rate))
def forward(self, protein_seq_enc):
# pdb.set_trace()
protein_seq_enc = protein_seq_enc.transpose(1, 2) # protein_seq_enc's shape: B*L*d_model -> B*d_model*L
first_embedding = protein_seq_enc
second_embedding = protein_seq_enc
third_embedding = protein_seq_enc
for i in range(len(self.first_)):
first_embedding = self.first_[i](first_embedding)
for i in range(len(self.second_)):
second_embedding = self.second_[i](second_embedding)
for i in range(len(self.third_)):
third_embedding = self.third_[i](third_embedding)
# pdb.set_trace()
protein_seq_enc = first_embedding + second_embedding + third_embedding
return protein_seq_enc.transpose(1, 2)
class ReciprocalLayerwithCNN(nn.Module):
def __init__(self, d_model, d_inner, d_hidden, n_head, d_k, d_v):
super().__init__()
self.cnn = DilatedCNN(d_model, d_hidden)
self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden,
d_k, d_v)
self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden,
d_k, d_v)
self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_hidden,
d_k, d_v)
self.ffn_seq = FFN(d_hidden, d_inner)
self.ffn_protein = FFN(d_hidden, d_inner)
def forward(self, sequence_enc, protein_seq_enc):
# pdb.set_trace() # protein_seq_enc.shape = B * L * d_model
protein_seq_enc = self.cnn(protein_seq_enc)
prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc)
seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc)
prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc,
seq_enc,
seq_enc,
prot_enc)
prot_enc = self.ffn_protein(prot_enc)
seq_enc = self.ffn_seq(seq_enc)
return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention
class ReciprocalLayer(nn.Module):
def __init__(self, d_model, d_inner, n_head, d_k, d_v):
super().__init__()
self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_model,
d_k, d_v)
self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_model,
d_k, d_v)
self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_model,
d_k, d_v)
self.ffn_seq = FFN(d_model, d_inner)
self.ffn_protein = FFN(d_model, d_inner)
def forward(self, sequence_enc, protein_seq_enc):
prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc)
seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc)
prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc,
seq_enc,
seq_enc,
prot_enc)
prot_enc = self.ffn_protein(prot_enc)
seq_enc = self.ffn_seq(seq_enc)
return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention