|
 |
|
|
|
- run with only +0.6gb total ram, with this at 192x256 |
|
- run with only +1gb total ram, with this at 320x320 |
|
``` |
|
from diffusers import StableDiffusionOnnxPipeline |
|
import torch |
|
from diffusers import ( |
|
DDPMScheduler, |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler |
|
) |
|
|
|
scheduler = DPMSolverMultistepScheduler.from_pretrained("./model", subfolder="scheduler") |
|
|
|
pipe = StableDiffusionOnnxPipeline.from_pretrained( |
|
'./model', |
|
custom_pipeline="lpw_stable_diffusion_onnx", |
|
revision="onnx", |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
provider="CPUExecutionProvider" |
|
) |
|
|
|
|
|
prompt = "a photo of " |
|
neg_prompt = "" |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1) |
|
|
|
|
|
image = pipe.text2img(prompt,negative_prompt=neg_prompt, num_inference_steps=8, width=192, height=256, guidance_scale=10, generator=generator, max_embeddings_multiples=3).images[0] |
|
image.save('./test.png') |
|
``` |