Dr. Jorge Abreu Vicente commited on
Commit
fc0e85d
·
1 Parent(s): e4d816f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -11
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
@@ -9,7 +10,24 @@ metrics:
9
  - f1
10
  model-index:
11
  - name: sd-panelization-v2
12
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +35,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # sd-panelization-v2
19
 
20
- This model was trained from scratch on the source_data_nlp dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.0075
23
- - Accuracy Score: 0.9980
24
- - Precision: 0.9651
25
- - Recall: 0.9905
26
- - F1: 0.9776
27
 
28
  ## Model description
29
 
@@ -43,19 +61,18 @@ More information needed
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 5e-05
46
- - train_batch_size: 64
47
  - eval_batch_size: 256
48
  - seed: 42
49
  - optimizer: Adafactor
50
  - lr_scheduler_type: linear
51
- - num_epochs: 2.0
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
57
- | 0.008 | 1.0 | 216 | 0.0072 | 0.9979 | 0.9715 | 0.9761 | 0.9738 |
58
- | 0.005 | 2.0 | 432 | 0.0075 | 0.9980 | 0.9651 | 0.9905 | 0.9776 |
59
 
60
 
61
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
 
10
  - f1
11
  model-index:
12
  - name: sd-panelization-v2
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: source_data_nlp
19
+ type: source_data_nlp
20
+ args: PANELIZATION
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.9134245120169964
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.9494824016563147
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9311044937736871
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # sd-panelization-v2
37
 
38
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.0050
41
+ - Accuracy Score: 0.9982
42
+ - Precision: 0.9134
43
+ - Recall: 0.9495
44
+ - F1: 0.9311
45
 
46
  ## Model description
47
 
 
61
 
62
  The following hyperparameters were used during training:
63
  - learning_rate: 5e-05
64
+ - train_batch_size: 32
65
  - eval_batch_size: 256
66
  - seed: 42
67
  - optimizer: Adafactor
68
  - lr_scheduler_type: linear
69
+ - num_epochs: 1.0
70
 
71
  ### Training results
72
 
73
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
74
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
75
+ | 0.0048 | 1.0 | 431 | 0.0050 | 0.9982 | 0.9134 | 0.9495 | 0.9311 |
 
76
 
77
 
78
  ### Framework versions