Dr. Jorge Abreu Vicente
commited on
Commit
·
fc0e85d
1
Parent(s):
e4d816f
update model card README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
@@ -9,7 +10,24 @@ metrics:
|
|
9 |
- f1
|
10 |
model-index:
|
11 |
- name: sd-panelization-v2
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +35,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# sd-panelization-v2
|
19 |
|
20 |
-
This model
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy Score: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,19 +61,18 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5e-05
|
46 |
-
- train_batch_size:
|
47 |
- eval_batch_size: 256
|
48 |
- seed: 42
|
49 |
- optimizer: Adafactor
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
|
57 |
-
| 0.
|
58 |
-
| 0.005 | 2.0 | 432 | 0.0075 | 0.9980 | 0.9651 | 0.9905 | 0.9776 |
|
59 |
|
60 |
|
61 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
|
|
10 |
- f1
|
11 |
model-index:
|
12 |
- name: sd-panelization-v2
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: source_data_nlp
|
19 |
+
type: source_data_nlp
|
20 |
+
args: PANELIZATION
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.9134245120169964
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9494824016563147
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9311044937736871
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
# sd-panelization-v2
|
37 |
|
38 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset.
|
39 |
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 0.0050
|
41 |
+
- Accuracy Score: 0.9982
|
42 |
+
- Precision: 0.9134
|
43 |
+
- Recall: 0.9495
|
44 |
+
- F1: 0.9311
|
45 |
|
46 |
## Model description
|
47 |
|
|
|
61 |
|
62 |
The following hyperparameters were used during training:
|
63 |
- learning_rate: 5e-05
|
64 |
+
- train_batch_size: 32
|
65 |
- eval_batch_size: 256
|
66 |
- seed: 42
|
67 |
- optimizer: Adafactor
|
68 |
- lr_scheduler_type: linear
|
69 |
+
- num_epochs: 1.0
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|
74 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
|
75 |
+
| 0.0048 | 1.0 | 431 | 0.0050 | 0.9982 | 0.9134 | 0.9495 | 0.9311 |
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|