|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import numpy as np |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
import torch.distributed as dist |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_utils import PreTrainedModel, sdpa_attention_forward |
|
from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
logging, |
|
replace_return_docstrings, |
|
torch_int, |
|
is_flash_attn_greater_or_equal_2_10 |
|
) |
|
from .configuration_keye import KeyeConfig, KeyeVisionConfig |
|
|
|
|
|
import warnings |
|
from typing import Any, Callable, Optional, Tuple, Union, List |
|
from torch import nn |
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
from einops import repeat |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_varlen_func |
|
from flash_attn.layers.rotary import apply_rotary_emb |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
else: |
|
flash_attn_varlen_func = None |
|
apply_rotary_emb = None |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "KeyeConfig" |
|
|
|
class KeyeMLP(nn.Module): |
|
def __init__(self, config, bias: bool = False): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
|
|
|
|
def trunc_normal_tf_( |
|
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 |
|
) -> torch.Tensor: |
|
"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \\leq \text{mean} \\leq b`. |
|
|
|
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the |
|
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 |
|
and the result is subsequently scaled and shifted by the mean and std args. |
|
|
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
""" |
|
with torch.no_grad(): |
|
_trunc_normal_(tensor, 0, 1.0, a, b) |
|
tensor.mul_(std).add_(mean) |
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
|
if mode == "fan_in": |
|
denom = fan_in |
|
elif mode == "fan_out": |
|
denom = fan_out |
|
elif mode == "fan_avg": |
|
denom = (fan_in + fan_out) / 2 |
|
|
|
variance = scale / denom |
|
|
|
if distribution == "truncated_normal": |
|
|
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) |
|
elif distribution == "normal": |
|
with torch.no_grad(): |
|
tensor.normal_(std=math.sqrt(variance)) |
|
elif distribution == "uniform": |
|
bound = math.sqrt(3 * variance) |
|
with torch.no_grad(): |
|
tensor.uniform_(-bound, bound) |
|
else: |
|
raise ValueError(f"invalid distribution {distribution}") |
|
|
|
|
|
def lecun_normal_(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") |
|
|
|
|
|
def default_flax_embed_init(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="normal") |
|
|
|
|
|
class Projector(nn.Module): |
|
|
|
def __init__(self, text_config: KeyeConfig,vision_config: KeyeVisionConfig): |
|
super().__init__() |
|
self.text_config = text_config |
|
self.vision_config = vision_config |
|
self.merge_kernel_size = (2, 2) |
|
|
|
self.hidden_size = ( |
|
self.vision_config.hidden_size |
|
* self.merge_kernel_size[0] |
|
* self.merge_kernel_size[1] |
|
) |
|
|
|
self.pre_norm = torch.nn.LayerNorm(self.vision_config.hidden_size, eps=1e-05) |
|
self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
self.act = GELUActivation() |
|
self.linear_2 = nn.Linear( |
|
self.hidden_size, self.text_config.hidden_size, bias=True |
|
) |
|
|
|
def forward(self, image_features: torch.Tensor, image_grid_thw: List[Tuple[int, int, int]]) -> torch.Tensor: |
|
m1, m2 = self.merge_kernel_size |
|
if isinstance(image_features, (list, tuple)): |
|
processed_features = list() |
|
for image_feature, image_grid in zip(image_features, image_grid_thw): |
|
image_feature = self.pre_norm(image_feature) |
|
t, h, w = image_grid |
|
from einops import rearrange |
|
|
|
image_feature = rearrange(image_feature, "(t h p1 w p2) d -> (t h w) (p1 p2 d)", t=t, h=h // m1, p1=m1, w=w // m2, p2=m2) |
|
hidden_states = self.linear_1(image_feature) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
processed_features.append(hidden_states) |
|
|
|
return processed_features |
|
|
|
dims = image_features.shape[:-1] |
|
dim = image_features.shape[-1] |
|
image_features = image_features.view(np.prod(dims), dim) |
|
hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size) |
|
hidden_states = self.linear_1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
|
|
return hidden_states.view(*dims, -1) |
|
|
|
class SiglipVisionEmbeddings(nn.Module): |
|
def __init__(self, config: KeyeVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
padding="valid", |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches |
|
self.cache_position_embedding = dict() |
|
self.cache_position_count = dict() |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
self.packing_position_embedding = nn.Embedding(32768, self.embed_dim) |
|
|
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) |
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int, is_after_patchify: bool = False) -> torch.Tensor: |
|
""" |
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution |
|
images. This method is also adapted to support torch.jit tracing and no class embeddings. |
|
|
|
Adapted from: |
|
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and |
|
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 |
|
""" |
|
num_positions = self.position_embedding.weight.shape[0] |
|
|
|
patch_pos_embed = self.position_embedding.weight.unsqueeze(0) |
|
|
|
dim = embeddings.shape[-1] |
|
|
|
if is_after_patchify: |
|
new_height = height |
|
new_width = width |
|
else: |
|
new_height = height // self.patch_size |
|
new_width = width // self.patch_size |
|
|
|
sqrt_num_positions = torch_int(num_positions**0.5) |
|
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) |
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) |
|
|
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed, |
|
size=(new_height, new_width), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return patch_pos_embed |
|
|
|
@staticmethod |
|
def flatten_list(image_grid_thw): |
|
tmp_image_grid_thw = list() |
|
for image_grid in image_grid_thw: |
|
if isinstance(image_grid, list): |
|
tmp_image_grid_thw.extend(image_grid) |
|
else: |
|
tmp_image_grid_thw.append(image_grid) |
|
return tmp_image_grid_thw |
|
|
|
def fetch_position_embedding_lfu_cache(self, embeddings, h, w, max_cache=20): |
|
grid = (h, w) |
|
if grid in self.cache_position_embedding: |
|
self.cache_position_count[grid] += 1 |
|
return self.cache_position_embedding[grid] |
|
|
|
if len(self.cache_position_embedding) >= max_cache: |
|
min_hit_grid = min(self.cache_position_count, key=self.cache_position_count.get) |
|
self.cache_position_count.pop(min_hit_grid) |
|
self.cache_position_embedding.pop(min_hit_grid) |
|
|
|
position_embedding = self.interpolate_pos_encoding(embeddings, h, w, True) |
|
self.cache_position_count[grid] = 1 |
|
self.cache_position_embedding[grid] = position_embedding |
|
return position_embedding |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
position_ids: Optional[torch.Tensor] = None, |
|
image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, |
|
interpolate_pos_encoding=False |
|
) -> torch.Tensor: |
|
if pixel_values.dim() == 5: |
|
assert position_ids is not None |
|
from einops import rearrange |
|
batch_size, squence_len, channel, height, width = pixel_values.shape |
|
target_dtype = self.patch_embedding.weight.dtype |
|
pixel_values = rearrange(pixel_values, "b l c h w -> (b l) c h w") |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
embeddings = patch_embeds.flatten(-2).squeeze(-1) |
|
embeddings = rearrange(embeddings, "(b l) d -> b l d", b=batch_size, l=squence_len) |
|
|
|
|
|
if interpolate_pos_encoding and image_grid_thw is not None: |
|
flatten_image_grid_thw = self.flatten_list(image_grid_thw) |
|
assert batch_size == 1 |
|
start = 0 |
|
image_embedding_list = list() |
|
assert sum([np.prod(x) for x in flatten_image_grid_thw]) == embeddings.shape[1], (flatten_image_grid_thw, embeddings.shape) |
|
embeddings = embeddings.squeeze(0) |
|
tmp_embeddings = list() |
|
for image_grid in image_grid_thw: |
|
t, h, w = image_grid |
|
end = start + t * h * w |
|
image_embeddings = embeddings[start: end, :] |
|
position_embedding = self.interpolate_pos_encoding(image_embeddings, h, w, True).squeeze(0).repeat( |
|
t, 1) |
|
image_embeddings = image_embeddings + position_embedding |
|
tmp_embeddings.append(image_embeddings) |
|
start = end |
|
embeddings = torch.concat(tmp_embeddings, dim=0).unsqueeze(0) |
|
else: |
|
embeddings = embeddings + self.packing_position_embedding(position_ids) |
|
return embeddings |
|
else: |
|
raise NotImplementedError(str(pixel_values.shape)) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling |
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class SiglipAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: KeyeVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
self.is_causal = False |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
cu_seqlens: Optional[List[torch.Tensor]] = None, |
|
rope_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
use_flash_attn = (cu_seqlens is not None) and self.config._attn_implementation == "flash_attention_2" |
|
|
|
batch_size, seq_length, embed_dim = hidden_states.shape |
|
|
|
queries = self.q_proj(hidden_states) |
|
keys = self.k_proj(hidden_states) |
|
values = self.v_proj(hidden_states) |
|
|
|
if rope_emb is None: |
|
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
else: |
|
assert cu_seqlens is not None, "Rope support flash attn only." |
|
cos, sin = rope_emb |
|
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim) |
|
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim) |
|
if use_flash_attn: |
|
queries, keys = apply_rotary_pos_emb_flashatt(queries, keys, cos, sin) |
|
else: |
|
queries, keys = apply_rotary_pos_emb_vision(queries, keys, cos, sin) |
|
queries = queries.transpose(1, 2) |
|
keys = keys.transpose(1, 2) |
|
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
if not use_flash_attn: |
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and output_attentions: |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
elif self.config._attn_implementation == "sdpa": |
|
attention_interface = sdpa_attention_forward |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
queries, |
|
keys, |
|
values, |
|
attention_mask, |
|
is_causal=self.is_causal, |
|
scaling=self.scale, |
|
dropout=0.0 if not self.training else self.dropout, |
|
) |
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() |
|
else: |
|
assert batch_size == 1, hidden_states.shape |
|
queries = queries.transpose(1, 2).squeeze(0) |
|
keys = keys.transpose(1, 2).squeeze(0) |
|
values = values.transpose(1, 2).squeeze(0) |
|
|
|
max_seqlen_q = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
max_seqlen_k = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
assert cu_seqlens[-1].item() == queries.shape[0] == keys.shape[0] == values.shape[0], (cu_seqlens, queries.shape, keys.shape, values.shape) |
|
|
|
attn_output = flash_attn_varlen_func( |
|
queries, |
|
keys, |
|
values, |
|
cu_seqlens, |
|
cu_seqlens, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
causal=False, |
|
softmax_scale=self.scale, |
|
) |
|
attn_output = attn_output.flatten(-2).unsqueeze(0) |
|
attn_weights = None |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
class SiglipMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SiglipEncoderLayer(nn.Module): |
|
def __init__(self, config: Union[KeyeVisionConfig]): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.self_attn = SiglipAttention(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = SiglipMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
cu_seqlens: Optional[List[torch.Tensor]] = None, |
|
rope_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
Input to the layer of shape `(batch, seq_len, embed_dim)`. |
|
attention_mask (`torch.FloatTensor`): |
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
cu_seqlens=cu_seqlens, |
|
rope_emb=rope_emb, |
|
|
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class SiglipPreTrainedModel(PreTrainedModel): |
|
config_class = KeyeConfig |
|
base_model_prefix = "siglip" |
|
supports_gradient_checkpointing = True |
|
|
|
_no_split_modules = [ |
|
"SiglipTextEmbeddings", |
|
"SiglipEncoderLayer", |
|
"SiglipVisionEmbeddings", |
|
"SiglipMultiheadAttentionPoolingHead", |
|
] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, SiglipVisionEmbeddings): |
|
width = ( |
|
self.config.vision_config.hidden_size |
|
if isinstance(self.config, KeyeConfig) |
|
else self.config.hidden_size |
|
) |
|
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) |
|
elif isinstance(module, nn.Embedding): |
|
default_flax_embed_init(module.weight) |
|
elif isinstance(module, SiglipAttention): |
|
nn.init.xavier_uniform_(module.q_proj.weight) |
|
nn.init.xavier_uniform_(module.k_proj.weight) |
|
nn.init.xavier_uniform_(module.v_proj.weight) |
|
nn.init.xavier_uniform_(module.out_proj.weight) |
|
nn.init.zeros_(module.q_proj.bias) |
|
nn.init.zeros_(module.k_proj.bias) |
|
nn.init.zeros_(module.v_proj.bias) |
|
nn.init.zeros_(module.out_proj.bias) |
|
elif isinstance(module, SiglipMLP): |
|
nn.init.xavier_uniform_(module.fc1.weight) |
|
nn.init.xavier_uniform_(module.fc2.weight) |
|
nn.init.normal_(module.fc1.bias, std=1e-6) |
|
nn.init.normal_(module.fc2.bias, std=1e-6) |
|
elif isinstance(module, SiglipMultiheadAttentionPoolingHead): |
|
nn.init.xavier_uniform_(module.probe.data) |
|
nn.init.xavier_uniform_(module.attention.in_proj_weight.data) |
|
nn.init.zeros_(module.attention.in_proj_bias.data) |
|
elif isinstance(module, (nn.Linear, nn.Conv2d)): |
|
lecun_normal_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
SIGLIP_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`KeyeConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
SIGLIP_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
SIGLIP_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): |
|
Whether to interpolate the pre-trained position encodings. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
SIGLIP_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): |
|
Whether to interpolate the pre-trained position encodings. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
class SiglipEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`SiglipEncoderLayer`]. |
|
|
|
Args: |
|
config: KeyeConfig |
|
""" |
|
|
|
def __init__(self, config: KeyeConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
num_heads = config.num_attention_heads |
|
head_dim = embed_dim // num_heads |
|
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2) |
|
self.gradient_checkpointing = False |
|
|
|
@staticmethod |
|
def flatten_list(image_grid_thw): |
|
tmp_image_grid_thw = list() |
|
for image_grid in image_grid_thw: |
|
if isinstance(image_grid, list): |
|
tmp_image_grid_thw.extend(image_grid) |
|
else: |
|
tmp_image_grid_thw.append(image_grid) |
|
return tmp_image_grid_thw |
|
|
|
def build_window_index(self, image_grid, window_size, device): |
|
from einops import rearrange |
|
window_indices = list() |
|
pad_values = -100 |
|
start_window_index = 0 |
|
cu_seqlens_within_windows = list() |
|
|
|
for t, h, w in image_grid: |
|
window_index = torch.arange(t * h * w, device=device).reshape(t, h, w) |
|
pad_h = (-h) % window_size |
|
pad_w = (-w) % window_size |
|
assert pad_h >= 0 and pad_w >= 0, (pad_h, pad_w) |
|
window_index = F.pad(window_index, (0, pad_w, 0, pad_h), value=pad_values) |
|
window_index = rearrange(window_index, "t (h p1) (w p2) -> t (h w) (p1 p2)", p1=window_size, p2=window_size) |
|
window_seqlens = (window_index != pad_values).long().sum(-1).reshape(-1) |
|
window_index = window_index.reshape(-1) |
|
window_index = window_index[window_index != pad_values] |
|
window_indices.append(window_index + start_window_index) |
|
cu_seqlens_within_windows.append(window_seqlens.cumsum(0) + start_window_index) |
|
start_window_index += t * h * w |
|
window_indices = torch.concat(window_indices, dim=0) |
|
cu_seqlens_within_windows = torch.concat(cu_seqlens_within_windows, dim=0) |
|
cu_seqlens_within_windows = F.pad(cu_seqlens_within_windows, (1, 0), value=0).to(torch.int32) |
|
return window_indices, cu_seqlens_within_windows |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cu_seqlens: Optional[List[torch.Tensor]] = None, |
|
image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, |
|
height_position_ids: Optional[torch.Tensor] = None, |
|
width_position_ids: Optional[torch.Tensor] = None, |
|
use_rope: Optional[bool] = False, |
|
window_size: Optional[bool] = -1, |
|
vision_or_text: str = "vision", |
|
|
|
) -> BaseModelOutput: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
vision_or_text = "vision" |
|
assert vision_or_text in ["vision", "text"] |
|
use_window_attn = (window_size > 0 and vision_or_text == "vision") |
|
use_rope = (use_rope is True) and (vision_or_text == "vision") |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
device = inputs_embeds.device |
|
hidden_states = inputs_embeds |
|
attention_mask = attention_mask.to(inputs_embeds.dtype) if attention_mask is not None else None |
|
if use_rope is True: |
|
flatten_image_grid_thw = self.flatten_list(image_grid_thw) |
|
assert sum([np.prod(x) for x in flatten_image_grid_thw]) == hidden_states.shape[1], (flatten_image_grid_thw, hidden_states.shape) |
|
|
|
if width_position_ids is None or height_position_ids is None: |
|
split_hids = list() |
|
split_wids = list() |
|
for t, h, w in flatten_image_grid_thw: |
|
image_pids = torch.arange(t * h * w, device=device) % (h * w) |
|
sample_hids = image_pids // w |
|
sample_wids = image_pids % w |
|
split_hids.append(sample_hids) |
|
split_wids.append(sample_wids) |
|
width_position_ids = torch.concat(split_wids, dim=0) |
|
height_position_ids = torch.concat(split_hids, dim=0) |
|
|
|
window_indices, cu_seqlens_within_windows = None, None |
|
|
|
if use_window_attn: |
|
window_indices, cu_seqlens_within_windows = self.build_window_index(flatten_image_grid_thw, window_size, device) |
|
reversed_window_indices = window_indices.argsort() |
|
height_position_ids = height_position_ids[window_indices] |
|
width_position_ids = width_position_ids[window_indices] |
|
|
|
pids = torch.stack([height_position_ids, width_position_ids], dim=-1) |
|
max_grid_size = pids.max() + 1 |
|
rope_emb_max_grid = self.rotary_pos_emb(max_grid_size) |
|
rope_emb = rope_emb_max_grid[pids].flatten(1) |
|
rope_emb = rope_emb.repeat(1, 2) |
|
rope_emb = (rope_emb.cos(), rope_emb.sin()) |
|
else: |
|
|
|
rope_emb = None |
|
window_indices, cu_seqlens_within_windows = None, None |
|
|
|
if use_window_attn: |
|
flatten_image_grid_thw = self.flatten_list(image_grid_thw) |
|
assert sum([np.prod(x) for x in flatten_image_grid_thw]) == hidden_states.shape[1], (flatten_image_grid_thw, hidden_states.shape) |
|
|
|
window_indices, cu_seqlens_within_windows = self.build_window_index(flatten_image_grid_thw, window_size, device) |
|
reversed_window_indices = window_indices.argsort() |
|
|
|
if use_window_attn: |
|
assert cu_seqlens_within_windows is not None |
|
attn_cu_seqlens = cu_seqlens_within_windows |
|
hidden_states = hidden_states[:, window_indices, :] |
|
else: |
|
attn_cu_seqlens = cu_seqlens |
|
|
|
for encoder_layer in self.layers: |
|
if output_hidden_states: |
|
encoder_states = encoder_states + ((hidden_states[:, reversed_window_indices, :],) if use_window_attn else (hidden_states, )) |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
output_attentions, |
|
attn_cu_seqlens, |
|
rope_emb, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
cu_seqlens=attn_cu_seqlens, |
|
rope_emb=rope_emb, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if use_window_attn: |
|
hidden_states = hidden_states[:, reversed_window_indices, :] |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
class SiglipVisionTransformer(nn.Module): |
|
def __init__(self, config: KeyeVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = SiglipVisionEmbeddings(config) |
|
self.encoder = SiglipEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head |
|
if self.use_head: |
|
self.head = SiglipMultiheadAttentionPoolingHead(config) |
|
|
|
|
|
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=KeyeVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = False, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sample_indices: Optional[torch.Tensor] = None, |
|
image_indices: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
height_position_ids: Optional[torch.Tensor] = None, |
|
width_position_ids: Optional[torch.Tensor] = None, |
|
cu_seqlens: Optional[List[torch.Tensor]] = None, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
vision_return_embed_list: Optional[bool] = False, |
|
image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, |
|
return_pooler_output: Optional[bool] = True, |
|
use_rope: Optional[bool] = False, |
|
window_size: Optional[bool] = -1, |
|
) -> BaseModelOutputWithPooling: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
hidden_states = self.embeddings( |
|
pixel_values, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
position_ids=position_ids, |
|
image_grid_thw=image_grid_thw |
|
) |
|
|
|
encoder_outputs: BaseModelOutput = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
attention_mask=attention_mask, |
|
cu_seqlens=cu_seqlens, |
|
image_grid_thw=image_grid_thw, |
|
use_rope=use_rope, |
|
height_position_ids=height_position_ids, |
|
width_position_ids=width_position_ids, |
|
window_size=window_size, |
|
vision_or_text="vision", |
|
) |
|
|
|
last_hidden_state = encoder_outputs.last_hidden_state |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
if return_pooler_output is True: |
|
if sample_indices is not None: |
|
assert self.use_head is True |
|
dim = last_hidden_state.shape[-1] |
|
sample_hidden_state_list = list() |
|
|
|
hidden_state = last_hidden_state.squeeze(0) |
|
sample_index = sample_indices |
|
unique_sample_index = torch.unique(sample_index).sort().values.unbind(0) |
|
unique_sample_index = list(unique_sample_index) |
|
if len(unique_sample_index) > 0 and unique_sample_index[0] == -1: |
|
unique_sample_index = unique_sample_index[1:] |
|
for sample_idx in unique_sample_index: |
|
token_indices = (sample_index == sample_idx).nonzero().flatten() |
|
sample_hidden_state = hidden_state[token_indices] |
|
sample_hidden_state_list.append(sample_hidden_state) |
|
|
|
if not vision_return_embed_list: |
|
max_length = max([_state.shape[0] for _state in sample_hidden_state_list]) |
|
tmp_sample_hidden_state_list = list() |
|
padding_mask = list() |
|
for idx, _state in enumerate(sample_hidden_state_list): |
|
padding_length = max_length - _state.shape[0] |
|
mask = _state.new_zeros(size=(max_length, ), dtype=torch.int64) |
|
mask[-padding_length: ] = 1 |
|
padding_mask.append(mask) |
|
padding = _state.new_zeros(size=(padding_length, dim)) |
|
new_state = torch.concat([_state, padding], dim=0) |
|
tmp_sample_hidden_state_list.append(new_state) |
|
sample_hidden_state = torch.stack(tmp_sample_hidden_state_list, dim=0) |
|
padding_mask = torch.stack(padding_mask, dim=0).float().to(last_hidden_state.dtype) |
|
pooler_output = self.head(sample_hidden_state, key_padding_mask=padding_mask) |
|
else: |
|
pooler_output = list() |
|
for state in sample_hidden_state_list: |
|
sample_pooler_output = self.head(state.unsqueeze(0)) |
|
pooler_output.append(sample_pooler_output) |
|
pooler_output = torch.concat(pooler_output, dim=0) |
|
sample_hidden_state = sample_hidden_state_list |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sample_hidden_state, |
|
pooler_output=pooler_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
else: |
|
pooler_output = self.head(last_hidden_state) if self.use_head else None |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooler_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
sample_hidden_state = list() |
|
assert cu_seqlens is not None |
|
for i in range(cu_seqlens.shape[0] - 1): |
|
start = cu_seqlens[i] |
|
end = cu_seqlens[i + 1] |
|
tensor = last_hidden_state[:, start: end, :].squeeze(0) |
|
sample_hidden_state.append(tensor) |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sample_hidden_state, |
|
pooler_output=None, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class SiglipMultiheadAttentionPoolingHead(nn.Module): |
|
"""Multihead Attention Pooling.""" |
|
|
|
def __init__(self, config: KeyeVisionConfig): |
|
super().__init__() |
|
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) |
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp = SiglipMLP(config) |
|
|
|
def forward(self, hidden_state, key_padding_mask=None): |
|
batch_size = hidden_state.shape[0] |
|
probe = self.probe.repeat(batch_size, 1, 1) |
|
|
|
hidden_state = self.attention(probe, hidden_state, hidden_state, key_padding_mask=key_padding_mask)[0] |
|
|
|
residual = hidden_state |
|
hidden_state = self.layernorm(hidden_state) |
|
hidden_state = residual + self.mlp(hidden_state) |
|
|
|
return hidden_state[:, 0] |
|
|
|
|
|
@add_start_docstrings( |
|
"""The vision model from SigLIP without any head or projection on top.""", |
|
SIGLIP_START_DOCSTRING, |
|
) |
|
class SiglipVisionModel(SiglipPreTrainedModel): |
|
config_class = KeyeVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: KeyeVisionConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = SiglipVisionTransformer(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
|
|
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=KeyeVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values, |
|
sample_indices: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: bool = False, |
|
position_ids: Optional[torch.Tensor] = None, |
|
vision_return_embed_list: Optional[bool] = False, |
|
image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, |
|
cu_seqlens: Optional[List[torch.Tensor]] = None, |
|
return_pooler_output: Optional[bool] = True, |
|
use_rope: Optional[bool] = False, |
|
window_size: Optional[bool] = -1, |
|
) -> BaseModelOutputWithPooling: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, SiglipVisionModel |
|
|
|
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") |
|
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output # pooled features |
|
```""" |
|
|
|
return self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
position_ids=position_ids, |
|
vision_return_embed_list=vision_return_embed_list, |
|
image_grid_thw=image_grid_thw, |
|
sample_indices=sample_indices, |
|
cu_seqlens=cu_seqlens, |
|
return_pooler_output=return_pooler_output, |
|
use_rope=use_rope, |
|
window_size=window_size, |
|
) |
|
|
|
|
|
|
|
class Qwen3RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Qwen3RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
class KeyePatchMerger(nn.Module): |
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: |
|
super().__init__() |
|
self.hidden_size = context_dim * (spatial_merge_size**2) |
|
self.ln_q = Qwen3RMSNorm(context_dim, eps=1e-6) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(self.hidden_size, dim), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) |
|
return x |
|
|
|
|
|
def apply_rotary_pos_emb_flashatt( |
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
cos = cos.chunk(2, dim=-1)[0].contiguous() |
|
sin = sin.chunk(2, dim=-1)[0].contiguous() |
|
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q) |
|
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb_vision( |
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
orig_q_dtype = q.dtype |
|
orig_k_dtype = k.dtype |
|
q, k = q.float(), k.float() |
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
q_embed = q_embed.to(orig_q_dtype) |
|
k_embed = k_embed.to(orig_k_dtype) |
|
return q_embed, k_embed |
|
|
|
Keye_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`KeyeConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Keye Model outputting raw hidden-states without any specific head on top.", |
|
Keye_START_DOCSTRING, |
|
) |
|
class Qwen3PreTrainedModel(PreTrainedModel): |
|
config_class = KeyeConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["KeyeDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = False |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv3d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
class SigLIPRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.rope_init() |
|
|
|
def rope_init(self): |
|
inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class KeyeRotaryEmbedding(nn.Module): |
|
def __init__(self, config: KeyeConfig, device=None): |
|
super().__init__() |
|
self.rope_kwargs = {} |
|
if config is None: |
|
logger.warning_once( |
|
"`KeyeRotaryEmbedding` can now be fully parameterized by passing the model config through the " |
|
"`config` argument. All other arguments will be removed in v4.46" |
|
) |
|
self.rope_kwargs = { |
|
"rope_type": rope_type, |
|
"factor": scaling_factor, |
|
"dim": dim, |
|
"base": base, |
|
"max_position_embeddings": max_position_embeddings, |
|
} |
|
self.rope_type = rope_type |
|
self.max_seq_len_cached = max_position_embeddings |
|
self.original_max_seq_len = max_position_embeddings |
|
else: |
|
|
|
if config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
self.config, device, seq_len=seq_len, **self.rope_kwargs |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) |
|
position_ids_expanded = position_ids[:, :, None, :].float() |
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
|
|
|
|
cos = cos * self.attention_scaling |
|
sin = sin * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
def rope_init(self): |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
self.config, device=None, **self.rope_kwargs |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
|
|
class Qwen3MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). |
|
|
|
Explanation: |
|
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding |
|
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For |
|
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately. |
|
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. |
|
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, |
|
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no |
|
difference with modern LLMs. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
mrope_section(`List(int)`): |
|
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
mrope_section = mrope_section * 2 |
|
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
unsqueeze_dim |
|
) |
|
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
unsqueeze_dim |
|
) |
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class KeyeAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: KeyeConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
self.rope_scaling = config.rope_scaling |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
self.rotary_emb = KeyeRotaryEmbedding(config=config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_multimodal_rotary_pos_emb( |
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] |
|
) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
|
|
if query_states.dtype == torch.float16: |
|
attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class KeyeFlashAttention2(KeyeAttention): |
|
""" |
|
Keye flash attention module, following Keye attention module. This module inherits from `KeyeAttention` |
|
as the weights of the module stays untouched. The only required change would be on the forward pass |
|
where it needs to correctly call the public API of flash attention and deal with padding tokens |
|
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom |
|
config.max_window_layers layers. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
sliding_window = -1, |
|
**kwargs, |
|
): |
|
bsz, q_len, _ = hidden_states.size() |
|
q= self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim) |
|
query_states = self.q_norm(q) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_multimodal_rotary_pos_emb( |
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] |
|
) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if ( |
|
sliding_window == -1 |
|
and self.config.use_sliding_window |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and self.layer_idx >= self.config.max_window_layers |
|
): |
|
sliding_window = self.config.sliding_window |
|
else: |
|
sliding_window = -1 |
|
|
|
if cu_seqlens is not None: |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
cu_seqlens = cu_seqlens.to(torch.int32) |
|
|
|
attn_output = flash_attn_varlen_func( |
|
query_states.squeeze(0), |
|
key_states.squeeze(0), |
|
value_states.squeeze(0), |
|
cu_seqlens, |
|
cu_seqlens, |
|
max_seqlen, |
|
max_seqlen, |
|
dropout_p=dropout_rate, |
|
window_size=(sliding_window, sliding_window), |
|
causal=self.is_causal |
|
) |
|
else: |
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
sliding_window=sliding_window, |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class KeyeSdpaAttention(KeyeAttention): |
|
""" |
|
attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`KeyeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"KeyeModel is using KeyeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_multimodal_rotary_pos_emb( |
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] |
|
) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
QWEN3_ATTENTION_CLASSES = { |
|
"eager": KeyeAttention, |
|
"flash_attention_2": KeyeFlashAttention2, |
|
"sdpa": KeyeSdpaAttention, |
|
} |
|
|
|
|
|
class KeyeDecoderLayer(nn.Module): |
|
def __init__(self, config: KeyeConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
|
|
self.self_attn = QWEN3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
self.mlp = Qwen3MLP(config) |
|
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Keye Model outputting raw hidden-states without any specific head on top.", |
|
Keye_START_DOCSTRING, |
|
) |
|
class Qwen3Model(Qwen3PreTrainedModel): |
|
def __init__(self, config: KeyeConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[KeyeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = KeyeRotaryEmbedding(config=config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None and not torch.jit.is_tracing(): |
|
past_key_values = DynamicCache() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
|
|
if position_ids is None: |
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) |
|
elif position_ids.dim() == 2: |
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for i, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
**kwargs, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and past_key_values is not None: |
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Keye. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
config=self.config, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: KeyeConfig, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to place the 4D attention mask on. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
config (`KeyeConfig`): |
|
The model's configuration class |
|
past_key_values (`Cache`): |
|
The cache class that is being used currently to generate |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
if config.sliding_window is not None: |
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
sliding_attend_mask = torch.arange(target_length, device=device) <= ( |
|
cache_position.reshape(-1, 1) - config.sliding_window |
|
) |
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
causal_mask *= diagonal_attend_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
@dataclass |
|
class KeyeCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for Keye causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
The rope index difference between sequence length and multimodal rope. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
class KeyeForConditionalGeneration(Qwen3PreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
config_class = KeyeConfig |
|
_no_split_modules = ["KeyeDecoderLayer", "SiglipEncoderLayer"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.mlp_AR = Projector(config, config.vision_config) |
|
self.visual = SiglipVisionModel(config.vision_config) |
|
self.model = Qwen3Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.rope_deltas = None |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def get_rope_index( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
second_per_grid_ts: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. |
|
|
|
Explanation: |
|
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. |
|
|
|
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs. |
|
Examples: |
|
input_ids: [T T T T T], here T is for text. |
|
temporal position_ids: [0, 1, 2, 3, 4] |
|
height position_ids: [0, 1, 2, 3, 4] |
|
width position_ids: [0, 1, 2, 3, 4] |
|
|
|
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part |
|
and 1D rotary position embedding for text part. |
|
Examples: |
|
Temporal (Time): 3 patches, representing different segments of the video in time. |
|
Height: 2 patches, dividing each frame vertically. |
|
Width: 2 patches, dividing each frame horizontally. |
|
We also have some important parameters: |
|
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second. |
|
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity. |
|
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames. |
|
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs. |
|
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. |
|
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100] |
|
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] |
|
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] |
|
text temporal position_ids: [101, 102, 103, 104, 105] |
|
text height position_ids: [101, 102, 103, 104, 105] |
|
text width position_ids: [101, 102, 103, 104, 105] |
|
Here we calculate the text start position_ids as the max vision position_ids plus 1. |
|
|
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each image in LLM. |
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each video in LLM. |
|
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*): |
|
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
Returns: |
|
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) |
|
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) |
|
""" |
|
spatial_merge_size = self.config.vision_config.spatial_merge_size |
|
image_token_id = self.config.image_token_id |
|
video_token_id = self.config.video_token_id |
|
vision_start_token_id = self.config.vision_start_token_id |
|
mrope_position_deltas = [] |
|
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): |
|
total_input_ids = input_ids |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(total_input_ids) |
|
position_ids = torch.ones( |
|
3, |
|
input_ids.shape[0], |
|
input_ids.shape[1], |
|
dtype=input_ids.dtype, |
|
device=input_ids.device, |
|
) |
|
image_index, video_index = 0, 0 |
|
attention_mask = attention_mask.to(total_input_ids.device) |
|
for i, input_ids in enumerate(total_input_ids): |
|
input_ids = input_ids[attention_mask[i] == 1] |
|
image_nums, video_nums = 0, 0 |
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) |
|
vision_tokens = input_ids[vision_start_indices + 1] |
|
image_nums = (vision_tokens == image_token_id).sum() |
|
video_nums = (vision_tokens == video_token_id).sum() |
|
input_tokens = input_ids.tolist() |
|
llm_pos_ids_list: list = [] |
|
st = 0 |
|
remain_images, remain_videos = image_nums, video_nums |
|
for _ in range(image_nums + video_nums): |
|
if image_token_id in input_tokens and remain_images > 0: |
|
ed_image = input_tokens.index(image_token_id, st) |
|
else: |
|
ed_image = len(input_tokens) + 1 |
|
if video_token_id in input_tokens and remain_videos > 0: |
|
ed_video = input_tokens.index(video_token_id, st) |
|
else: |
|
ed_video = len(input_tokens) + 1 |
|
if ed_image < ed_video: |
|
t, h, w = ( |
|
image_grid_thw[image_index][0], |
|
image_grid_thw[image_index][1], |
|
image_grid_thw[image_index][2], |
|
) |
|
second_per_grid_t = 0 |
|
image_index += 1 |
|
remain_images -= 1 |
|
ed = ed_image |
|
|
|
else: |
|
t, h, w = ( |
|
video_grid_thw[video_index][0], |
|
video_grid_thw[video_index][1], |
|
video_grid_thw[video_index][2], |
|
) |
|
if second_per_grid_ts is not None: |
|
second_per_grid_t = second_per_grid_ts[video_index] |
|
else: |
|
second_per_grid_t = 1.0 |
|
video_index += 1 |
|
remain_videos -= 1 |
|
ed = ed_video |
|
llm_grid_t, llm_grid_h, llm_grid_w = ( |
|
t.item(), |
|
h.item() // spatial_merge_size, |
|
w.item() // spatial_merge_size, |
|
) |
|
text_len = ed - st |
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
if torch.is_tensor(second_per_grid_t): second_per_grid_t = second_per_grid_t.detach().item() |
|
range_tensor = torch.arange(llm_grid_t).view(-1, 1) |
|
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w) |
|
|
|
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second |
|
|
|
time_tensor_long = time_tensor.long() |
|
t_index = time_tensor_long.flatten() |
|
|
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) |
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w |
|
|
|
if st < len(input_tokens): |
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
text_len = len(input_tokens) - st |
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) |
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) |
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) |
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) |
|
return position_ids, mrope_position_deltas |
|
else: |
|
if attention_mask is not None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) |
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] |
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] |
|
else: |
|
position_ids = ( |
|
torch.arange(input_ids.shape[1], device=input_ids.device) |
|
.view(1, 1, -1) |
|
.expand(3, input_ids.shape[0], -1) |
|
) |
|
mrope_position_deltas = torch.zeros( |
|
[input_ids.shape[0], 1], |
|
device=input_ids.device, |
|
dtype=input_ids.dtype, |
|
) |
|
|
|
return position_ids, mrope_position_deltas |
|
|
|
@replace_return_docstrings(output_type=KeyeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
rope_deltas: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
second_per_grid_ts: Optional[torch.Tensor] = None, |
|
**kwargs |
|
) -> Union[Tuple, KeyeCausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, KeyeForConditionalGeneration |
|
|
|
>>> model = KeyeForConditionalGeneration.from_pretrained("Keye/Keye-8B-Instruct") |
|
>>> processor = AutoProcessor.from_pretrained("Keye/Keye-8B-Instruct") |
|
|
|
>>> messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": "What is shown in this image?"}, |
|
], |
|
}, |
|
] |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.model.embed_tokens(input_ids) |
|
if pixel_values is not None: |
|
pixel_values = pixel_values.type(self.visual.dtype) |
|
pixel_values = pixel_values.unsqueeze(0) |
|
siglip_position_ids = list() |
|
image_grid_hws = list() |
|
sample_indices = list() |
|
cu_seqlens = [0] |
|
|
|
pro = 0 |
|
for idx, thw in enumerate(image_grid_thw): |
|
thw_tuple = tuple(thw.detach().cpu().numpy().tolist()) |
|
numel = np.prod(thw_tuple) |
|
image_grid_hws.append(thw_tuple) |
|
image_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:]) |
|
siglip_position_ids.append(image_position_ids) |
|
sample_indices.append(torch.full((numel, ), idx, dtype=torch.int64)) |
|
cu_seqlens.append(cu_seqlens[-1] + numel) |
|
|
|
siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(pixel_values.device) |
|
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values.device) |
|
sample_indices = torch.concat(sample_indices, dim=0).to(pixel_values.device) |
|
|
|
vision_outputs = self.visual( |
|
pixel_values=pixel_values, |
|
image_grid_thw=image_grid_hws, |
|
position_ids=siglip_position_ids, |
|
vision_return_embed_list=True, |
|
interpolate_pos_encoding=True, |
|
sample_indices=sample_indices, |
|
cu_seqlens=cu_seqlens, |
|
return_pooler_output=False, |
|
use_rope=True, |
|
window_size =-1, |
|
) |
|
image_embeds = vision_outputs.last_hidden_state |
|
|
|
image_embeds = self.mlp_AR(image_embeds, image_grid_thw) |
|
|
|
n_image_tokens = (input_ids == self.config.image_token_id).sum().item() |
|
|
|
image_embeds = torch.cat(image_embeds,dim=0) |
|
n_image_features = image_embeds.shape[0] |
|
if n_image_tokens != n_image_features: |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
|
|
mask = (input_ids == self.config.image_token_id) |
|
mask_unsqueezed = mask.unsqueeze(-1) |
|
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds) |
|
image_mask = mask_expanded.to(inputs_embeds.device) |
|
|
|
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) |
|
|
|
if pixel_values_videos is not None: |
|
pixel_values_videos = pixel_values_videos.type(self.visual.dtype) |
|
pixel_values_videos = pixel_values_videos.unsqueeze(0) |
|
siglip_position_ids = list() |
|
video_grid_hws = list() |
|
sample_indices = list() |
|
cu_seqlens = [0] |
|
|
|
for idx, thw in enumerate(video_grid_thw): |
|
thw_tuple = tuple(thw.detach().cpu().numpy().tolist()) |
|
numel = np.prod(thw_tuple) |
|
|
|
video_grid_hws.append(thw_tuple) |
|
video_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:]) |
|
siglip_position_ids.append(video_position_ids) |
|
sample_indices.append(torch.full((numel, ), idx, dtype=torch.int64)) |
|
cu_seqlens.append(cu_seqlens[-1] + numel) |
|
siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(pixel_values_videos.device) |
|
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values_videos.device) |
|
sample_indices = torch.concat(sample_indices, dim=0).to(pixel_values_videos.device) |
|
|
|
vision_outputs = self.visual( |
|
pixel_values=pixel_values_videos, |
|
image_grid_thw=video_grid_hws, |
|
position_ids=siglip_position_ids, |
|
vision_return_embed_list=True, |
|
interpolate_pos_encoding=True, |
|
sample_indices=sample_indices, |
|
cu_seqlens=cu_seqlens, |
|
return_pooler_output=False, |
|
use_rope=True, |
|
window_size = -1, |
|
) |
|
video_embeds = vision_outputs.last_hidden_state |
|
video_embeds = self.mlp_AR(video_embeds, video_grid_thw) |
|
n_video_tokens = (input_ids == self.config.video_token_id).sum().item() |
|
video_embeds = torch.cat(video_embeds,dim=0) |
|
n_video_features = video_embeds.shape[0] |
|
if n_video_tokens != n_video_features: |
|
raise ValueError( |
|
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" |
|
) |
|
|
|
mask = input_ids == self.config.video_token_id |
|
mask_unsqueezed = mask.unsqueeze(-1) |
|
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds) |
|
video_mask = mask_expanded.to(inputs_embeds.device) |
|
|
|
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(inputs_embeds.device) |
|
|
|
|
|
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2): |
|
|
|
if ( |
|
(cache_position is not None and cache_position[0] == 0) |
|
or self.rope_deltas is None |
|
or (past_key_values is None or past_key_values.get_seq_length() == 0) |
|
): |
|
position_ids, rope_deltas = self.get_rope_index( |
|
input_ids, |
|
image_grid_thw, |
|
video_grid_thw, |
|
second_per_grid_ts, |
|
attention_mask, |
|
) |
|
self.rope_deltas = rope_deltas |
|
|
|
else: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
delta = ( |
|
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device) |
|
if cache_position is not None |
|
else 0 |
|
) |
|
position_ids = torch.arange(seq_length, device=inputs_embeds.device) |
|
position_ids = position_ids.view(1, -1).expand(batch_size, -1) |
|
if cache_position is not None: |
|
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) |
|
position_ids = position_ids.add(delta) |
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) |
|
|
|
outputs = self.model( |
|
input_ids=None, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
**kwargs |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
logits = logits.float() |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return KeyeCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
rope_deltas=self.rope_deltas, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
pixel_values=None, |
|
pixel_values_videos=None, |
|
image_grid_thw=None, |
|
video_grid_thw=None, |
|
second_per_grid_ts=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
cache_position=cache_position, |
|
position_ids=position_ids, |
|
pixel_values=pixel_values, |
|
pixel_values_videos=pixel_values_videos, |
|
image_grid_thw=image_grid_thw, |
|
video_grid_thw=video_grid_thw, |
|
second_per_grid_ts=second_per_grid_ts, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
|
|
model_inputs["position_ids"] = None |
|
|
|
if cache_position[0] != 0: |
|
model_inputs["pixel_values"] = None |
|
model_inputs["pixel_values_videos"] = None |
|
|
|
return model_inputs |
|
|
|
def _get_image_nums_and_video_nums( |
|
self, |
|
input_ids: Optional[torch.LongTensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Get the number of images and videos for each sample to calculate the separation length of the sample tensor. |
|
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. |
|
|
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Returns: |
|
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) |
|
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) |
|
""" |
|
image_token_id = self.config.image_token_id |
|
video_token_id = self.config.video_token_id |
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
|
vision_start_mask = input_ids == vision_start_token_id |
|
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) |
|
image_mask = input_ids == image_token_id |
|
video_mask = input_ids == video_token_id |
|
image_nums = torch.sum(vision_first_mask & image_mask, dim=1) |
|
video_nums = torch.sum(vision_first_mask & video_mask, dim=1) |
|
|
|
return image_nums, video_nums |
|
|
|
def _expand_inputs_for_generation( |
|
self, |
|
expand_size: int = 1, |
|
is_encoder_decoder: bool = False, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
**model_kwargs, |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
if expand_size == 1: |
|
return input_ids, model_kwargs |
|
|
|
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] |
|
|
|
def _expand_dict_for_generation_visual(dict_to_expand): |
|
image_grid_thw = model_kwargs.get("image_grid_thw", None) |
|
video_grid_thw = model_kwargs.get("video_grid_thw", None) |
|
image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids) |
|
|
|
def _repeat_interleave_samples(x, lengths, repeat_times): |
|
samples = torch.split(x, lengths) |
|
repeat_args = [repeat_times] + [1] * (x.dim() - 1) |
|
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) |
|
return result |
|
|
|
for key in dict_to_expand: |
|
if key == "pixel_values": |
|
|
|
samples = torch.split(image_grid_thw, list(image_nums)) |
|
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "image_grid_thw": |
|
|
|
lengths = list(image_nums) |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "pixel_values_videos": |
|
samples = torch.split(video_grid_thw, list(video_nums)) |
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "video_grid_thw": |
|
lengths = list(video_nums) |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "second_per_grid_ts": |
|
if not isinstance(dict_to_expand[key], list): |
|
raise TypeError( |
|
f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead." |
|
) |
|
tensor = torch.tensor(dict_to_expand[key]) |
|
lengths = list(video_nums) |
|
tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size) |
|
dict_to_expand[key] = tensor.tolist() |
|
return dict_to_expand |
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
for key in dict_to_expand: |
|
if ( |
|
key != "cache_position" |
|
and dict_to_expand[key] is not None |
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
and key not in visual_keys |
|
): |
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
return dict_to_expand |
|
|
|
|
|
|
|
if input_ids is not None and input_ids.numel() != 0: |
|
model_kwargs = _expand_dict_for_generation_visual(model_kwargs) |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
if is_encoder_decoder: |
|
if model_kwargs.get("encoder_outputs") is None: |
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|