File size: 1,156 Bytes
c6cbad9
 
8961b4a
 
 
 
 
86d49d8
 
8961b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: mit
tags:
- pytorch
- neural-network
- chaos-theory
- logistic-map
language:
- en
---
# Logistic Map Approximator (Neural Network)

This model approximates the **logistic map equation**:

> xβ‚™β‚Šβ‚ = r Γ— xβ‚™ Γ— (1 βˆ’ xβ‚™)

It is trained using a simple feedforward neural network to learn chaotic dynamics across different values of `r` ∈ [2.5, 4.0].

##  Model Details

- **Framework:** PyTorch
- **Input:** 
  - `x` ∈ [0, 1]
  - `r` ∈ [2.5, 4.0]
- **Output:** `x_next` (approximation of the next value in sequence)
- **Loss Function:** Mean Squared Error (MSE)
- **Architecture:** 2 hidden layers (ReLU), trained for 100 epochs

##  Performance

The model closely approximates `x_next` for a wide range of `r` values, including the chaotic regime.


##  Files

- `logistic_map_approximator.pth`: Trained PyTorch model weights
- `mandelbrot.py`: Full training and evaluation code
- `README.md`: You're reading it
- `example_plot.png`: Comparison of true vs predicted outputs

##  Applications

- Chaos theory visualizations
- Educational tools on non-linear dynamics
- Function approximation benchmarking

##  License

MIT License