wav2vec2-base-STTTest

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5198
  • Wer: 0.3393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.231 1.0 500 0.4337 0.4100
0.1845 2.01 1000 0.4296 0.3931
0.1551 3.01 1500 0.4397 0.3770
0.1479 4.02 2000 0.4524 0.3827
0.1186 5.02 2500 0.5182 0.3795
0.1079 6.02 3000 0.4799 0.3737
0.0974 7.03 3500 0.4966 0.3860
0.0878 8.03 4000 0.4993 0.3699
0.0788 9.04 4500 0.5183 0.3678
0.0732 10.04 5000 0.5064 0.3635
0.0664 11.04 5500 0.5330 0.3663
0.0596 12.05 6000 0.5147 0.3516
0.0538 13.05 6500 0.5254 0.3581
0.0535 14.06 7000 0.4902 0.3534
0.0492 15.06 7500 0.5115 0.3488
0.0455 16.06 8000 0.5250 0.3472
0.0434 17.07 8500 0.5338 0.3515
0.0351 18.07 9000 0.5365 0.3444
0.0341 19.08 9500 0.4886 0.3439
0.0332 20.08 10000 0.5234 0.3475
0.0289 21.08 10500 0.5375 0.3464
0.028 22.09 11000 0.5395 0.3478
0.0225 23.09 11500 0.5236 0.3428
0.0244 24.1 12000 0.5122 0.3402
0.0246 25.1 12500 0.5212 0.3390
0.0214 26.1 13000 0.5198 0.3393
0.0179 27.11 13500 0.5198 0.3393
0.0194 28.11 14000 0.5198 0.3393
0.0193 29.12 14500 0.5198 0.3393

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.1+cu111
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support