File size: 17,546 Bytes
89b2487 383df45 89b2487 383df45 89b2487 5ac9c4e 053e39a a4d4570 e396659 053e39a 3302a9c 5ac9c4e 89b2487 383df45 89b2487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import math
import random
from collections import namedtuple, OrderedDict
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import ops
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
from transformers import PreTrainedModel
from transformers.utils.backbone_utils import load_backbone
from .configuration_diffusiondet import DiffusionDetConfig
from .head import HeadDynamicK
from .loss import CriterionDynamicK
from transformers.utils import ModelOutput
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
def default(val, d):
if val is not None:
return val
return d() if callable(d) else d
def extract(a, t, x_shape):
"""extract the appropriate t index for a batch of indices"""
batch_size = t.shape[0]
out = a.gather(-1, t)
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
@dataclass
class DiffusionDetOutput(ModelOutput):
"""
Output type of DiffusionDet.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
labels: torch.IntTensor = None
pred_boxes: torch.FloatTensor = None
class DiffusionDet(PreTrainedModel):
"""
Implement DiffusionDet
"""
config_class = DiffusionDetConfig
main_input_name = "pixel_values"
def __init__(self, config):
super(DiffusionDet, self).__init__(config)
self.in_features = config.roi_head_in_features
self.num_classes = config.num_labels
self.num_proposals = config.num_proposals
self.num_heads = config.num_heads
self.backbone = load_backbone(config)
self.fpn = FeaturePyramidNetwork(
in_channels_list=self.backbone.channels,
out_channels=config.fpn_out_channels,
# extra_blocks=LastLevelMaxPool(),
)
# build diffusion
betas = cosine_beta_schedule(1000)
alphas_cumprod = torch.cumprod(1 - betas, dim=0)
timesteps, = betas.shape
sampling_timesteps = config.sample_step
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
self.num_timesteps = int(timesteps)
self.sampling_timesteps = default(sampling_timesteps, timesteps)
self.ddim_sampling_eta = 1.
self.scale = config.snr_scale
assert self.sampling_timesteps <= timesteps
roi_input_shape = {
'p2': {'stride': 4},
'p3': {'stride': 8},
'p4': {'stride': 16},
'p5': {'stride': 32},
'p6': {'stride': 64}
}
self.head = HeadDynamicK(config, roi_input_shape=roi_input_shape)
self.deep_supervision = config.deep_supervision
self.use_focal = config.use_focal
self.use_fed_loss = config.use_fed_loss
self.use_nms = config.use_nms
weight_dict = {
"loss_ce": config.class_weight, "loss_bbox": config.l1_weight, "loss_giou": config.giou_weight
}
if self.deep_supervision:
aux_weight_dict = {}
for i in range(self.num_heads - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
self.criterion = CriterionDynamicK(config, num_classes=self.num_classes, weight_dict=weight_dict)
def _init_weights(self, module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
torch.nn.init.kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
if module.bias is not None:
torch.nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.BatchNorm2d):
torch.nn.init.constant_(module.weight, 1)
torch.nn.init.constant_(module.bias, 0)
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def model_predictions(self, backbone_feats, images_whwh, x, t):
x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
x_boxes = ((x_boxes / self.scale) + 1) / 2
x_boxes = ops.box_convert(x_boxes, 'cxcywh', 'xyxy')
x_boxes = x_boxes * images_whwh[:, None, :]
outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t)
x_start = outputs_coord[-1] # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
x_start = x_start / images_whwh[:, None, :]
x_start = ops.box_convert(x_start, 'xyxy', 'cxcywh')
x_start = (x_start * 2 - 1.) * self.scale
x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
pred_noise = self.predict_noise_from_start(x, t, x_start)
return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord
@torch.no_grad()
def ddim_sample(self, batched_inputs, backbone_feats, images_whwh):
bs = len(batched_inputs)
image_sizes = batched_inputs.shape
shape = (bs, self.num_proposals, 4)
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = torch.linspace(-1, self.num_timesteps - 1, steps=self.sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device=self.device)
ensemble_score, ensemble_label, ensemble_coord = [], [], []
outputs_class, outputs_coord = None, None
for time, time_next in time_pairs:
time_cond = torch.full((bs,), time, device=self.device, dtype=torch.long)
preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond)
pred_noise, x_start = preds.pred_noise, preds.pred_x_start
score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
threshold = 0.5
score_per_image = torch.sigmoid(score_per_image)
value, _ = torch.max(score_per_image, -1, keepdim=False)
keep_idx = value > threshold
num_remain = torch.sum(keep_idx)
pred_noise = pred_noise[:, keep_idx, :]
x_start = x_start[:, keep_idx, :]
img = img[:, keep_idx, :]
if time_next < 0:
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)
if self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
outputs_coord[-1])
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
if self.sampling_timesteps > 1:
box_pred_per_image = torch.cat(ensemble_coord, dim=0)
scores_per_image = torch.cat(ensemble_score, dim=0)
labels_per_image = torch.cat(ensemble_label, dim=0)
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
return box_pred_per_image, scores_per_image, labels_per_image
else:
return self.inference(outputs_class[-1], outputs_coord[-1])
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
def forward(self, pixel_values, labels):
"""
Args:
"""
images = pixel_values.to(self.device)
images_whwh = list()
for image in images:
h, w = image.shape[-2:]
images_whwh.append(torch.tensor([w, h, w, h], device=self.device))
images_whwh = torch.stack(images_whwh)
features = self.backbone(images)
features = OrderedDict(
[(key, feature) for key, feature in zip(self.backbone.out_features, features.feature_maps)]
)
features = self.fpn(features) # [144, 72, 36, 18]
features = [features[f] for f in features.keys()]
# if self.training:
labels = list(map(lambda tensor: tensor.to(self.device), labels))
targets, x_boxes, noises, ts = self.prepare_targets(labels)
ts = ts.squeeze(-1)
x_boxes = x_boxes * images_whwh[:, None, :]
outputs_class, outputs_coord = self.head(features, x_boxes, ts)
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
if self.deep_supervision:
output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
loss_dict = self.criterion(output, targets)
weight_dict = self.criterion.weight_dict
for k in loss_dict.keys():
if k in weight_dict:
loss_dict[k] *= weight_dict[k]
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
if not self.training:
pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
return DiffusionDetOutput(
loss=loss_dict['loss'],
loss_dict=loss_dict,
logits=pred_logits,
labels=pred_labels,
pred_boxes=pred_boxes,
)
return DiffusionDetOutput(
loss=loss_dict['loss'],
loss_dict=loss_dict,
logits=output['pred_logits'],
pred_boxes=output['pred_boxes']
)
def prepare_diffusion_concat(self, gt_boxes):
"""
:param gt_boxes: (cx, cy, w, h), normalized
:param num_proposals:
"""
t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
noise = torch.randn(self.num_proposals, 4, device=self.device)
num_gt = gt_boxes.shape[0]
if not num_gt: # generate fake gt boxes if empty gt boxes
gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
num_gt = 1
if num_gt < self.num_proposals:
box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
device=self.device) / 6. + 0.5 # 3sigma = 1/2 --> sigma: 1/6
box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
elif num_gt > self.num_proposals:
select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
random.shuffle(select_mask)
x_start = gt_boxes[select_mask]
else:
x_start = gt_boxes
x_start = (x_start * 2. - 1.) * self.scale
# noise sample
x = self.q_sample(x_start=x_start, t=t, noise=noise)
x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
x = ((x / self.scale) + 1) / 2.
diff_boxes = ops.box_convert(x, 'cxcywh', 'xyxy')
return diff_boxes, noise, t
def prepare_targets(self, targets):
new_targets = []
diffused_boxes = []
noises = []
ts = []
for target in targets:
h, w = target.size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
gt_classes = target.class_labels.to(self.device)
gt_boxes = target.boxes.to(self.device)
d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
gt_boxes = gt_boxes * image_size_xyxy
gt_boxes = ops.box_convert(gt_boxes, 'cxcywh', 'xyxy')
diffused_boxes.append(d_boxes)
noises.append(d_noise)
ts.append(d_t)
new_targets.append({
"labels": gt_classes,
"boxes": target.boxes.to(self.device),
"boxes_xyxy": gt_boxes,
"image_size_xyxy": image_size_xyxy.to(self.device),
"image_size_xyxy_tgt": image_size_xyxy_tgt.to(self.device),
"area": ops.box_area(target.boxes.to(self.device)),
})
return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)
def inference(self, box_cls, box_pred):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
The tensor predicts the classification probability for each proposal.
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every proposal
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
results = []
boxes_output = []
logits_output = []
labels_output = []
if self.use_focal or self.use_fed_loss:
scores = torch.sigmoid(box_cls)
labels = torch.arange(self.num_classes, device=self.device). \
unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)
for i, (scores_per_image, box_pred_per_image) in enumerate(zip(
scores, box_pred
)):
scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
labels_per_image = labels[topk_indices]
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
box_pred_per_image = box_pred_per_image[topk_indices]
if self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, labels_per_image
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
boxes_output.append(box_pred_per_image)
logits_output.append(scores_per_image)
labels_output.append(labels_per_image)
else:
# For each box we assign the best class or the second best if the best on is `no_object`.
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
for i, (scores_per_image, labels_per_image, box_pred_per_image) in enumerate(zip(
scores, labels, box_pred
)):
if self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, labels_per_image
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
boxes_output.append(box_pred_per_image)
logits_output.append(scores_per_image)
labels_output.append(labels_per_image)
return boxes_output, logits_output, labels_output
|