File size: 17,546 Bytes
89b2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383df45
89b2487
 
 
 
 
 
 
 
 
 
 
 
383df45
89b2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac9c4e
053e39a
a4d4570
e396659
 
053e39a
3302a9c
 
5ac9c4e
89b2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383df45
89b2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import math
import random
from collections import namedtuple, OrderedDict
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union

import torch
from torch import nn
import torch.nn.functional as F
from torchvision import ops
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
from transformers import PreTrainedModel

from transformers.utils.backbone_utils import load_backbone
from .configuration_diffusiondet import DiffusionDetConfig

from .head import HeadDynamicK
from .loss import CriterionDynamicK

from transformers.utils import ModelOutput

ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])


def default(val, d):
    if val is not None:
        return val
    return d() if callable(d) else d


def extract(a, t, x_shape):
    """extract the appropriate  t  index for a batch of indices"""
    batch_size = t.shape[0]
    out = a.gather(-1, t)
    return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


@dataclass
class DiffusionDetOutput(ModelOutput):
    """
    Output type of DiffusionDet.
    """

    loss: Optional[torch.FloatTensor] = None
    loss_dict: Optional[Dict] = None
    logits: torch.FloatTensor = None
    labels: torch.IntTensor = None
    pred_boxes: torch.FloatTensor = None


class DiffusionDet(PreTrainedModel):
    """
    Implement DiffusionDet
    """
    config_class = DiffusionDetConfig
    main_input_name = "pixel_values"

    def __init__(self, config):
        super(DiffusionDet, self).__init__(config)

        self.in_features = config.roi_head_in_features
        self.num_classes = config.num_labels
        self.num_proposals = config.num_proposals
        self.num_heads = config.num_heads

        self.backbone = load_backbone(config)
        self.fpn = FeaturePyramidNetwork(
            in_channels_list=self.backbone.channels,
            out_channels=config.fpn_out_channels,
            # extra_blocks=LastLevelMaxPool(),
        )

        # build diffusion
        betas = cosine_beta_schedule(1000)
        alphas_cumprod = torch.cumprod(1 - betas, dim=0)

        timesteps, = betas.shape
        sampling_timesteps = config.sample_step

        self.register_buffer('alphas_cumprod', alphas_cumprod)
        self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
        self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
        self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))

        self.num_timesteps = int(timesteps)
        self.sampling_timesteps = default(sampling_timesteps, timesteps)
        self.ddim_sampling_eta = 1.
        self.scale = config.snr_scale
        assert self.sampling_timesteps <= timesteps

        roi_input_shape = {
            'p2': {'stride': 4},
            'p3': {'stride': 8},
            'p4': {'stride': 16},
            'p5': {'stride': 32},
            'p6': {'stride': 64}
        }
        self.head = HeadDynamicK(config, roi_input_shape=roi_input_shape)

        self.deep_supervision = config.deep_supervision
        self.use_focal = config.use_focal
        self.use_fed_loss = config.use_fed_loss
        self.use_nms = config.use_nms

        weight_dict = {
            "loss_ce": config.class_weight, "loss_bbox": config.l1_weight, "loss_giou": config.giou_weight
        }
        if self.deep_supervision:
            aux_weight_dict = {}
            for i in range(self.num_heads - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        self.criterion = CriterionDynamicK(config, num_classes=self.num_classes, weight_dict=weight_dict)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
            torch.nn.init.kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
            if module.bias is not None:
                torch.nn.init.constant_(module.bias, 0)
        elif isinstance(module, nn.BatchNorm2d):
            torch.nn.init.constant_(module.weight, 1)
            torch.nn.init.constant_(module.bias, 0)

    def predict_noise_from_start(self, x_t, t, x0):
        return (
                (extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
        )

    def model_predictions(self, backbone_feats, images_whwh, x, t):
        x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
        x_boxes = ((x_boxes / self.scale) + 1) / 2
        x_boxes = ops.box_convert(x_boxes, 'cxcywh', 'xyxy')
        x_boxes = x_boxes * images_whwh[:, None, :]
        outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t)

        x_start = outputs_coord[-1]  # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
        x_start = x_start / images_whwh[:, None, :]
        x_start = ops.box_convert(x_start, 'xyxy', 'cxcywh')
        x_start = (x_start * 2 - 1.) * self.scale
        x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
        pred_noise = self.predict_noise_from_start(x, t, x_start)

        return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord

    @torch.no_grad()
    def ddim_sample(self, batched_inputs, backbone_feats, images_whwh):
        bs = len(batched_inputs)
        image_sizes = batched_inputs.shape
        shape = (bs, self.num_proposals, 4)

        # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = torch.linspace(-1, self.num_timesteps - 1, steps=self.sampling_timesteps + 1)
        times = list(reversed(times.int().tolist()))
        time_pairs = list(zip(times[:-1], times[1:]))  # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

        img = torch.randn(shape, device=self.device)

        ensemble_score, ensemble_label, ensemble_coord = [], [], []
        outputs_class, outputs_coord = None, None
        for time, time_next in time_pairs:
            time_cond = torch.full((bs,), time, device=self.device, dtype=torch.long)

            preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond)
            pred_noise, x_start = preds.pred_noise, preds.pred_x_start

            score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
            threshold = 0.5
            score_per_image = torch.sigmoid(score_per_image)
            value, _ = torch.max(score_per_image, -1, keepdim=False)
            keep_idx = value > threshold
            num_remain = torch.sum(keep_idx)

            pred_noise = pred_noise[:, keep_idx, :]
            x_start = x_start[:, keep_idx, :]
            img = img[:, keep_idx, :]

            if time_next < 0:
                img = x_start
                continue

            alpha = self.alphas_cumprod[time]
            alpha_next = self.alphas_cumprod[time_next]

            sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
            c = (1 - alpha_next - sigma ** 2).sqrt()

            noise = torch.randn_like(img)

            img = x_start * alpha_next.sqrt() + \
                  c * pred_noise + \
                  sigma * noise

            img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)

            if self.sampling_timesteps > 1:
                box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
                                                                                        outputs_coord[-1])
                ensemble_score.append(scores_per_image)
                ensemble_label.append(labels_per_image)
                ensemble_coord.append(box_pred_per_image)

        if self.sampling_timesteps > 1:
            box_pred_per_image = torch.cat(ensemble_coord, dim=0)
            scores_per_image = torch.cat(ensemble_score, dim=0)
            labels_per_image = torch.cat(ensemble_label, dim=0)

            if self.use_nms:
                keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                box_pred_per_image = box_pred_per_image[keep]
                scores_per_image = scores_per_image[keep]
                labels_per_image = labels_per_image[keep]

            return box_pred_per_image, scores_per_image, labels_per_image
        else:
            return self.inference(outputs_class[-1], outputs_coord[-1])

    def q_sample(self, x_start, t, noise=None):
        if noise is None:
            noise = torch.randn_like(x_start)

        sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
        sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)

        return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise

    def forward(self, pixel_values, labels):
        """
        Args:
        """
        images = pixel_values.to(self.device)
        images_whwh = list()
        for image in images:
            h, w = image.shape[-2:]
            images_whwh.append(torch.tensor([w, h, w, h], device=self.device))
        images_whwh = torch.stack(images_whwh)

        features = self.backbone(images)
        features = OrderedDict(
            [(key, feature) for key, feature in zip(self.backbone.out_features, features.feature_maps)]
        )
        features = self.fpn(features)  # [144, 72, 36, 18]
        features = [features[f] for f in features.keys()]

        # if self.training:
        labels = list(map(lambda tensor: tensor.to(self.device), labels))
        targets, x_boxes, noises, ts = self.prepare_targets(labels)

        ts = ts.squeeze(-1)
        x_boxes = x_boxes * images_whwh[:, None, :]

        outputs_class, outputs_coord = self.head(features, x_boxes, ts)
        output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}

        if self.deep_supervision:
            output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
                                     for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]

        loss_dict = self.criterion(output, targets)
        weight_dict = self.criterion.weight_dict
        for k in loss_dict.keys():
            if k in weight_dict:
                loss_dict[k] *= weight_dict[k]
        loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])

        if not self.training:
            pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
            return DiffusionDetOutput(
                loss=loss_dict['loss'],
                loss_dict=loss_dict,
                logits=pred_logits,
                labels=pred_labels,
                pred_boxes=pred_boxes,
            )

        return DiffusionDetOutput(
            loss=loss_dict['loss'],
            loss_dict=loss_dict,
            logits=output['pred_logits'],
            pred_boxes=output['pred_boxes']
        )

    def prepare_diffusion_concat(self, gt_boxes):
        """
        :param gt_boxes: (cx, cy, w, h), normalized
        :param num_proposals:
        """
        t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
        noise = torch.randn(self.num_proposals, 4, device=self.device)

        num_gt = gt_boxes.shape[0]
        if not num_gt:  # generate fake gt boxes if empty gt boxes
            gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
            num_gt = 1

        if num_gt < self.num_proposals:
            box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
                                          device=self.device) / 6. + 0.5  # 3sigma = 1/2 --> sigma: 1/6
            box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
            x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
        elif num_gt > self.num_proposals:
            select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
            random.shuffle(select_mask)
            x_start = gt_boxes[select_mask]
        else:
            x_start = gt_boxes

        x_start = (x_start * 2. - 1.) * self.scale

        # noise sample
        x = self.q_sample(x_start=x_start, t=t, noise=noise)

        x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
        x = ((x / self.scale) + 1) / 2.

        diff_boxes = ops.box_convert(x, 'cxcywh', 'xyxy')

        return diff_boxes, noise, t

    def prepare_targets(self, targets):
        new_targets = []
        diffused_boxes = []
        noises = []
        ts = []
        for target in targets:
            h, w = target.size
            image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
            gt_classes = target.class_labels.to(self.device)
            gt_boxes = target.boxes.to(self.device)
            d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
            image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
            gt_boxes = gt_boxes * image_size_xyxy
            gt_boxes = ops.box_convert(gt_boxes, 'cxcywh', 'xyxy')

            diffused_boxes.append(d_boxes)
            noises.append(d_noise)
            ts.append(d_t)
            new_targets.append({
                "labels": gt_classes,
                "boxes": target.boxes.to(self.device),
                "boxes_xyxy": gt_boxes,
                "image_size_xyxy": image_size_xyxy.to(self.device),
                "image_size_xyxy_tgt": image_size_xyxy_tgt.to(self.device),
                "area": ops.box_area(target.boxes.to(self.device)),
            })

        return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)

    def inference(self, box_cls, box_pred):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
                The tensor predicts the classification probability for each proposal.
            box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every proposal
            image_sizes (List[torch.Size]): the input image sizes

        Returns:
            results (List[Instances]): a list of #images elements.
        """
        results = []
        boxes_output = []
        logits_output = []
        labels_output = []

        if self.use_focal or self.use_fed_loss:
            scores = torch.sigmoid(box_cls)
            labels = torch.arange(self.num_classes, device=self.device). \
                unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)

            for i, (scores_per_image, box_pred_per_image) in enumerate(zip(
                    scores, box_pred
            )):
                scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
                labels_per_image = labels[topk_indices]
                box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
                box_pred_per_image = box_pred_per_image[topk_indices]

                if self.sampling_timesteps > 1:
                    return box_pred_per_image, scores_per_image, labels_per_image

                if self.use_nms:
                    keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                    box_pred_per_image = box_pred_per_image[keep]
                    scores_per_image = scores_per_image[keep]
                    labels_per_image = labels_per_image[keep]

                boxes_output.append(box_pred_per_image)
                logits_output.append(scores_per_image)
                labels_output.append(labels_per_image)
        else:
            # For each box we assign the best class or the second best if the best on is `no_object`.
            scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)

            for i, (scores_per_image, labels_per_image, box_pred_per_image) in enumerate(zip(
                    scores, labels, box_pred
            )):
                if self.sampling_timesteps > 1:
                    return box_pred_per_image, scores_per_image, labels_per_image

                if self.use_nms:
                    keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                    box_pred_per_image = box_pred_per_image[keep]
                    scores_per_image = scores_per_image[keep]
                    labels_per_image = labels_per_image[keep]

                boxes_output.append(box_pred_per_image)
                logits_output.append(scores_per_image)
                labels_output.append(labels_per_image)

        return boxes_output, logits_output, labels_output