🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-I_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    43.49% 64.13% 58.09% 59.34% 58.11%
  • Params.: 89.2

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - SPOT_RGBI : [4,1,2]
- Input normalization (custom):
    - SPOT_RGBI:
        mean: [1137.09, 433.26, 508.75]
        std:  [543.11, 312.76, 284.61]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 43.49%
Overall Accuracy 64.13%
F-score 58.09%
Precision 59.34%
Recall 58.11%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 57.23 72.79 72.23 73.37
greenhouse 49.83 66.52 64.05 69.18
swimming pool 13.76 24.20 39.65 17.41
impervious surface 53.18 69.43 68.13 70.78
pervious surface 39.98 57.12 56.88 57.37
bare soil 43.96 61.07 63.87 58.51
water 71.02 83.06 80.41 85.88
snow 61.98 76.53 69.44 85.23
herbaceous vegetation 36.86 53.87 56.88 51.16
agricultural land 48.21 65.05 57.30 75.23
plowed land 4.56 8.72 12.45 6.71
vineyard 42.06 59.21 69.71 51.47
deciduous 58.67 73.95 73.26 74.66
coniferous 52.95 69.23 71.47 67.14
brushwood 18.07 30.61 34.41 27.56

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including IGNF/FLAIR-HUB_LC-I_swinbase-upernet

Evaluation results