Juner's picture
Update README.md
325d636 verified
---
license: mit
language:
- zh
metrics:
- accuracy
pipeline_tag: text-classification
widget:
- text: '李白(701年2月28日—762年12月) [28],字太白,号青莲居士 [20],祖籍陇西成纪(今甘肃省秦安县),出生于蜀郡绵州昌隆县(今四川省江油市青莲乡),一说出生于西域碎叶 [29]。唐朝伟大的浪漫主义诗人,凉武昭王李暠九世孙 [16] [23]。为人爽朗大方,乐于交友,爱好饮酒作诗,名列“酒中八仙” [2]。曾经得到唐玄宗李隆基赏识,担任翰林供奉 [126],赐金放还,游历全国,先后迎娶宰相许圉师、宗楚客的孙女。唐肃宗李亨即位后,卷入永王之乱,流放夜郎,辗转到达当涂县令李阳冰家。上元二年,去世,时年六十二 [16]。著有《李太白集》 [26],代表作有《望庐山瀑布》《行路难》《蜀道难》《将进酒》《早发白帝城》《黄鹤楼送孟浩然之广陵》等 [2]。李白所作词赋,就其开创意义及艺术成就而言,享有极为崇高的地位,后世誉为“诗仙”,与诗圣杜甫并称“李杜”。'
- text: "李白,字太白,号青莲居士,又号“谪仙人”,祖籍陇西成纪(今甘肃省秦安县),唐代伟大的浪漫主义诗人,被誉为“诗仙”,与杜甫并称“李杜”。李白为人爽朗大方,爱饮酒作诗,喜交友。他深受黄老列庄思想影响,有“济苍生、安黎元”的政治抱负,但却仕途不顺,只做过一些从仕小官。天宝元年(公元742年),因好友举荐,李白被唐玄宗召见,供奉翰林,但他并未获得高位和实权,只是作为文学侍从的角色,因权贵的谗毁,于天宝三载(744年)被排挤出京,此后在江淮一带盘桓,历经磨难。安史之乱爆发后,李白因永王李璘谋反案被牵连而流放夜郎,途中写下《早发白帝城》。不久后又遇赦返回,继续过着飘荡四方的流浪生活。晚年李白投奔他的族叔、当时在当涂(今属安徽)当县令的李阳冰,不久即病逝,享年六十二岁。李白的诗歌创作具有极高的艺术成就。他的诗以抒情为主,善于从民歌、神话中汲取营养素材,构成其特有的瑰丽绚烂的色彩,是屈原以来积极浪漫主义诗歌的新高峰。他将叙事、议论、抒情三者融为一体,以气贯之,既而形成了雄奇飘逸的风格。他的诗歌既有大气磅礴、奔腾跳跃的气势和力量,又有壮丽奇伟的景象,其中也不乏清新明快的句子。李白的乐府、歌行及绝句成就为最高。其歌行,完全打破诗歌创作的一切固有格式,笔法多端,达到了极其逍遥自在、变幻莫测、摇曳多姿的神奇境界,充分体现了浪漫主义的风格。李白的绝句自然明快,飘逸潇洒,能以简洁明快的语言表达出无尽的情思。在盛唐诗人中,王维、孟浩然长于五绝,王昌龄等七绝写得很好,兼长五绝与七绝而且同臻极境的,只有李白一人。总的来说,李白是一位具有世界影响的伟大诗人,他的诗歌在中国文学史上占有重要地位,对后世产生了深远的影响。他的诗才横溢,被誉为“诗仙”,他的作品充满了浪漫主义的色彩,具有极高的艺术价值和历史意义。"
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
This model is an artificial intelligence generated text detection model trained using real human text and AI generated text (mainly including Erine-Bot 4.0, Qwen-Turbo 4.0 and ChatGPT 3.0 )Can effectively identify whether text is generated by artificial intelligence.
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
You could implement the model with the sample if you want to classify between AI-generated text and real-text.
```python
from transformers import AutoTokenizer,AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Juner/AI-generated-text-detection-pair")
model = AutoModelForSequenceClassification.from_pretrained("Juner/AI-generated-text-detection-pair")
# 对输入进行编码并获取模型输出
question = "你喜欢我吗?"
answer = "是的!我喜欢你!"
inputs = tokenizer(question+answer,padding =True,truncation=True,return_tensors="pt",max_length=512)
outputs = model(**inputs)
```
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]