Introduction
This repository stores the model for YOLOv5, compatible with Kalray's neural network API.
Please see www.github.com/kalray/kann-model-zoo for details and proper usage WIKI.
Contents
ONNX model are described below:
Model |
FLOPs |
Params |
mAP-50 |
mAP-50/95 |
yolov5nu.onnx |
8.0 G |
2.6 M |
48.9 % |
34.4 %* |
yolov5su.onnx |
24.4 G |
9.1 M |
58.9 % |
43.1 %* |
yolov5su_relu.onnx |
24.4 G |
9.1 M |
54.7 % |
39.0 %* |
yolov5mu.onnx |
64.9 G |
25.0 M |
65.0 % |
49.3 %* |
yolov5lu.onnx |
136.1 G |
53.1 M |
68.2% |
52.3 %* |
yolov5xu.onnx |
248.0 G |
97.1 M |
69.3 % |
53.7 %* |
Lecture note reference
Repository or links references
BibTeX entry and citation info
@software{yolov5,
title = {Ultralytics YOLOv5},
author = {Glenn Jocher},
year = {2020},
version = {7.0},
license = {AGPL-3.0},
url = {https://github.com/ultralytics/yolov5},
doi = {10.5281/zenodo.3908559},
orcid = {0000-0001-5950-6979}
}
Authors: Quentin Muller, [email protected]