git / segmentation /README.md
Leonardo6's picture
Add files using upload-large-folder tool
63e060d verified
# InternImage for Semantic Segmentation
This folder contains the implementation of the InternImage for semantic segmentation.
Our segmentation code is developed on top of [MMSegmentation v0.27.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.27.0).
<!-- TOC -->
- [Installation](#installation)
- [Data Preparation](#data-preparation)
- [Released Models](#released-models)
- [Evaluation](#evaluation)
- [Training](#training)
- [Manage Jobs with Slurm](#manage-jobs-with-slurm)
- [Image Demo](#image-demo)
- [Export](#export)
<!-- TOC -->
## Installation
- Clone this repository:
```bash
git clone https://github.com/OpenGVLab/InternImage.git
cd InternImage
```
- Create a conda virtual environment and activate it:
```bash
conda create -n internimage python=3.9
conda activate internimage
```
- Install `CUDA>=10.2` with `cudnn>=7` following
the [official installation instructions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)
- Install `PyTorch>=1.10.0` and `torchvision>=0.9.0` with `CUDA>=10.2`:
For examples, to install `torch==1.11` with `CUDA==11.3`:
```bash
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
```
- Install other requirements:
note: conda opencv will break torchvision as not to support GPU, so we need to install opencv using pip.
```bash
conda install -c conda-forge termcolor yacs pyyaml scipy pip -y
pip install opencv-python
```
- Install `timm`, `mmcv-full` and \`mmsegmentation':
```bash
pip install -U openmim
mim install mmcv-full==1.5.0
mim install mmsegmentation==0.27.0
pip install timm==0.6.11 mmdet==2.28.1
```
- Install other requirements:
```bash
pip install opencv-python termcolor yacs pyyaml scipy
# Please use a version of numpy lower than 2.0
pip install numpy==1.26.4
pip install pydantic==1.10.13
```
- Compile CUDA operators
Before compiling, please use the `nvcc -V` command to check whether your `nvcc` version matches the CUDA version of PyTorch.
```bash
cd ./ops_dcnv3
sh ./make.sh
# unit test (should see all checking is True)
python test.py
```
- You can also install the operator using precompiled `.whl` files
[DCNv3-1.0-whl](https://github.com/OpenGVLab/InternImage/releases/tag/whl_files)
## Data Preparation
Prepare datasets according to the [guidelines](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#prepare-datasets) in MMSegmentation.
## Released Models
<details open>
<summary> Dataset: ADE20K </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #param | FLOPs | Config | Download |
| :---------: | :------------: | :--------: | :----------: | :----: | :---: | :---------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| UperNet | InternImage-T | 512x512 | 47.9 / 48.1 | 59M | 944G | [config](./configs/ade20k/upernet_internimage_t_512_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_t_512_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_t_512_160k_ade20k.log.json) |
| UperNet | InternImage-S | 512x512 | 50.1 / 50.9 | 80M | 1017G | [config](./configs/ade20k/upernet_internimage_s_512_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_s_512_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_s_512_160k_ade20k.log.json) |
| UperNet | InternImage-B | 512x512 | 50.8 / 51.3 | 128M | 1185G | [config](./configs/ade20k/upernet_internimage_b_512_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_b_512_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_b_512_160k_ade20k.log.json) |
| UperNet | InternImage-L | 640x640 | 53.9 / 54.1 | 256M | 2526G | [config](./configs/ade20k/upernet_internimage_l_640_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_l_640_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_l_640_160k_ade20k.log.json) |
| UperNet | InternImage-XL | 640x640 | 55.0 / 55.3 | 368M | 3142G | [config](./configs/ade20k/upernet_internimage_xl_640_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_xl_640_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_xl_640_160k_ade20k.log.json) |
| UperNet | InternImage-H | 896x896 | 59.9 / 60.3 | 1.12B | 3566G | [config](./configs/ade20k/upernet_internimage_h_896_160k_ade20k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_h_896_160k_ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_h_896_160k_ade20k.log.json) |
| Mask2Former | InternImage-H | 896x896 | 62.6 / 62.9 | 1.31B | 4635G | [config](./configs/ade20k/mask2former_internimage_h_896_80k_cocostuff2ade20k_ss.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_896_80k_cocostuff2ade20k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_896_80k_cocostuff2ade20k.log.json) |
</div>
</details>
<details>
<summary> Dataset: Cityscapes </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #params | FLOPs | Config | Download |
| :-----------: | :------------: | :--------: | :-----------: | :-----: | :---: | :--------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| UperNet | InternImage-T | 512x1024 | 82.58 / 83.40 | 59M | 1889G | [config](./configs/cityscapes/upernet_internimage_t_512x1024_160k_cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_t_512x1024_160k_cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_t_512x1024_160k_cityscapes.log.json) |
| UperNet | InternImage-S | 512x1024 | 82.74 / 83.45 | 80M | 2035G | [config](./configs/cityscapes/upernet_internimage_s_512x1024_160k_cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_s_512x1024_160k_cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_s_512x1024_160k_cityscapes.log.json) |
| UperNet | InternImage-B | 512x1024 | 83.18 / 83.97 | 128M | 2369G | [config](./configs/cityscapes/upernet_internimage_b_512x1024_160k_cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_b_512x1024_160k_cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_b_512x1024_160k_cityscapes.log.json) |
| UperNet | InternImage-L | 512x1024 | 83.68 / 84.41 | 256M | 3234G | [config](./configs/cityscapes/upernet_internimage_l_512x1024_160k_cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_l_512x1024_160k_cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_l_512x1024_160k_cityscapes.log.json) |
| UperNet\* | InternImage-L | 512x1024 | 85.94 / 86.22 | 256M | 3234G | [config](./configs/cityscapes/upernet_internimage_l_512x1024_160k_mapillary2cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_l_512x1024_160k_mapillary2cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_l_512x1024_160k_mapillary2cityscapes.log.json) |
| UperNet | InternImage-XL | 512x1024 | 83.62 / 84.28 | 368M | 4022G | [config](./configs/cityscapes/upernet_internimage_xl_512x1024_160k_cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_xl_512x1024_160k_cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_xl_512x1024_160k_cityscapes.log.json) |
| UperNet\* | InternImage-XL | 512x1024 | 86.20 / 86.42 | 368M | 4022G | [config](./configs/cityscapes/upernet_internimage_xl_512x1024_160k_mapillary2cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_xl_512x1024_160k_mapillary2cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/upernet_internimage_xl_512x1024_160k_mapillary2cityscapes.log.json) |
| SegFormer\* | InternImage-L | 512x1024 | 85.16 / 85.67 | 220M | 1580G | [config](./configs/cityscapes/segformer_internimage_l_512x1024_160k_mapillary2cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/segformer_internimage_l_512x1024_160k_mapillary2cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/segformer_internimage_l_512x1024_160k_mapillary2cityscapes.log.json) |
| SegFormer\* | InternImage-XL | 512x1024 | 85.41 / 85.93 | 330M | 2364G | [config](./configs/cityscapes/segformer_internimage_xl_512x1024_160k_mapillary2cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/segformer_internimage_xl_512x1024_160k_mapillary2cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/segformer_internimage_xl_512x1024_160k_mapillary2cityscapes.log.json) |
| Mask2Former\* | InternImage-H | 1024x1024 | 86.37 / 86.96 | 1094M | 7878G | [config](./configs/cityscapes/mask2former_internimage_h_1024x1024_80k_mapillary2cityscapes.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_1024x1024_80k_mapillary2cityscapes.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_1024x1024_80k_mapillary2cityscapes.log.json) |
\* denotes the model is trained using extra Mapillary dataset.
</div>
</details>
<details>
<summary> Dataset: COCO-Stuff-164K </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #params | FLOPs | Config | Download |
| :---------: | :-----------: | :--------: | :----------: | :-----: | :---: | :-----------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Mask2Former | InternImage-H | 896x896 | 52.6 / 52.8 | 1.31B | 4635G | [config](./configs/coco_stuff164k/mask2former_internimage_h_896_80k_cocostuff164k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_896_80k_cocostuff164k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_896_80k_cocostuff164k.log.json) |
</div>
</details>
<details>
<summary> Dataset: COCO-Stuff-10K </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #params | FLOPs | Config | Download |
| :---------: | :-----------: | :--------: | :----------: | :-----: | :---: | :-----------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Mask2Former | InternImage-H | 512x512 | 59.2 / 59.6 | 1.28B | 1528G | [config](./configs/coco_stuff10k/mask2former_internimage_h_512_40k_cocostuff164k_to_10k.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_512_40k_cocostuff164k_to_10k.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_512_40k_cocostuff164k_to_10k.log.json) |
</div>
</details>
<details>
<summary> Dataset: Pascal-Context-59 </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #param | FLOPs | Config | Download |
| :---------: | :-----------: | :--------: | :----------: | :----: | :---: | :---------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Mask2Former | InternImage-H | 480x480 | 69.7 / 70.3 | 1.07B | 867G | [config](./configs/pascal_context/mask2former_internimage_h_480_40k_pascal_context_59.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_480_40k_pascal_context_59.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_480_40k_pascal_context_59.log.json) |
</div>
</details>
<details>
<summary> Dataset: NYU-Depth-V2 </summary>
<br>
<div>
| method | backbone | resolution | mIoU (ss/ms) | #param | FLOPs | Config | Download |
| :---------: | :-----------: | :--------: | :----------: | :----: | :---: | :-----------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Mask2Former | InternImage-H | 480x480 | 67.1 / 68.1 | 1.07B | 867G | [config](./configs/nyu_depth_v2/mask2former_internimage_h_480_40k_nyu.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_480_40k_nyu.pth) \| [log](https://huggingface.co/OpenGVLab/InternImage/raw/main/mask2former_internimage_h_480_40k_nyu.log.json) |
</div>
</details>
<details>
<summary> Dataset: Mapillary </summary>
<br>
<div>
| method | backbone | resolution | #param | FLOPs | Config | Download |
| :---------: | :------------: | :--------: | :----: | :---: | :------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------: |
| UperNet | InternImage-L | 512x1024 | 256M | 3234G | [config](./configs/mapillary/upernet_internimage_l_512x1024_80k_mapillary.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_l_512x1024_80k_mapillary.pth) |
| UperNet | InternImage-XL | 512x1024 | 368M | 4022G | [config](./configs/mapillary/upernet_internimage_xl_512x1024_80k_mapillary.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/upernet_internimage_xl_512x1024_80k_mapillary.pth) |
| SegFormer | InternImage-L | 512x1024 | 220M | 1580G | [config](./configs/mapillary/segformer_internimage_l_512x1024_80k_mapillary.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/segformer_internimage_l_512x1024_80k_mapillary.pth) |
| SegFormer | InternImage-XL | 512x1024 | 330M | 2364G | [config](./configs/mapillary/segformer_internimage_xl_512x1024_80k_mapillary.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/segformer_internimage_xl_512x1024_80k_mapillary.pth) |
| Mask2Former | InternImage-H | 896x896 | 1094M | 7878G | [config](./configs/mapillary/mask2former_internimage_h_896x896_80k_mapillary.py) | [ckpt](https://huggingface.co/OpenGVLab/InternImage/resolve/main/mask2former_internimage_h_896x896_80k_mapillary.pth) |
</div>
</details>
## Evaluation
To evaluate our `InternImage` on ADE20K val, run:
```bash
sh dist_test.sh <config-file> <checkpoint> <gpu-num> --eval mIoU
```
For example, to evaluate the `InternImage-T` with a single GPU:
```bash
python test.py configs/ade20k/upernet_internimage_t_512_160k_ade20k.py pretrained/upernet_internimage_t_512_160k_ade20k.pth --eval mIoU
```
For example, to evaluate the `InternImage-B` with a single node with 8 GPUs:
```bash
sh dist_test.sh configs/ade20k/upernet_internimage_b_512_160k_ade20k.py pretrained/upernet_internimage_b_512_160k_ade20k.pth 8 --eval mIoU
```
## Training
To train an `InternImage` on ADE20K, run:
```bash
sh dist_train.sh <config-file> <gpu-num>
```
For example, to train `InternImage-T` with 8 GPU on 1 node (total batch size 16), run:
```bash
sh dist_train.sh configs/ade20k/upernet_internimage_t_512_160k_ade20k.py 8
```
## Manage Jobs with Slurm
For example, to train `InternImage-XL` with 8 GPU on 1 node (total batch size 16), run:
```bash
GPUS=8 sh slurm_train.sh <partition> <job-name> configs/ade20k/upernet_internimage_xl_640_160k_ade20k.py
```
## Image Demo
To inference a single/multiple image like this.
If you specify image containing directory instead of a single image, it will process all the images in the directory.
```
CUDA_VISIBLE_DEVICES=0 python image_demo.py \
data/ade/ADEChallengeData2016/images/validation/ADE_val_00000591.jpg \
configs/ade20k/upernet_internimage_t_512_160k_ade20k.py \
checkpoint_dir/seg/upernet_internimage_t_512_160k_ade20k.pth \
--palette ade20k
```
## Export
Install `mmdeploy` at first:
```shell
pip install mmdeploy==0.14.0
```
To export a segmentation model from PyTorch to TensorRT, run:
```shell
MODEL="model_name"
CKPT_PATH="/path/to/model/ckpt.pth"
python deploy.py \
"./deploy/configs/mmseg/segmentation_tensorrt_static-512x512.py" \
"./configs/ade20k/${MODEL}.py" \
"${CKPT_PATH}" \
"./deploy/demo.png" \
--work-dir "./work_dirs/mmseg/${MODEL}" \
--device cuda \
--dump-info
```
For example, to export `upernet_internimage_t_512_160k_ade20k` from PyTorch to TensorRT, run:
```shell
MODEL="upernet_internimage_t_512_160k_ade20k"
CKPT_PATH="/path/to/model/ckpt/upernet_internimage_t_512_160k_ade20k.pth"
python deploy.py \
"./deploy/configs/mmseg/segmentation_tensorrt_static-512x512.py" \
"./configs/ade20k/${MODEL}.py" \
"${CKPT_PATH}" \
"./deploy/demo.png" \
--work-dir "./work_dirs/mmseg/${MODEL}" \
--device cuda \
--dump-info
```