git / segmentation /image_demo.py
Leonardo6's picture
Add files using upload-large-folder tool
63e060d verified
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
from argparse import ArgumentParser
import cv2
import mmcv
import mmcv_custom # noqa: F401,F403
import mmseg_custom # noqa: F401,F403
from mmcv.runner import load_checkpoint
from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot
from mmseg.core import get_classes
from mmseg.core.evaluation import get_palette
def test_single_image(model, img_name, out_dir, color_palette, opacity):
# check img_name is an image file or not
assumed_imgformat = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
if (not img_name.lower().endswith(assumed_imgformat)):
print(f'Skip {img_name} because it is not an image file.')
return
result = inference_segmentor(model, img_name)
# show the results
if hasattr(model, 'module'):
model = model.module
img = model.show_result(img_name, result,
palette=color_palette,
show=False, opacity=opacity)
# save the results
mmcv.mkdir_or_exist(out_dir)
out_path = osp.join(out_dir, osp.basename(img_name))
cv2.imwrite(out_path, img)
print(f'Result is save at {out_path}')
def main():
parser = ArgumentParser()
parser.add_argument(
'img', help='Image file or a directory contains images')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('--out', type=str, default='demo', help='out dir')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='ade20k',
choices=['ade20k', 'cityscapes', 'cocostuff'],
help='Color palette used for segmentation map')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
model = init_segmentor(args.config, checkpoint=None, device=args.device)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = get_classes(args.palette)
# check arg.img is directory of a single image.
if osp.isdir(args.img):
for img in sorted(os.listdir(args.img)):
test_single_image(model, osp.join(args.img, img),
args.out, get_palette(args.palette), args.opacity)
else:
test_single_image(model, args.img, args.out,
get_palette(args.palette), args.opacity)
if __name__ == '__main__':
main()