🧠 FinancialBERT Sentiment Analysis (FinNews Binary)

This is a fine-tuned BERT model for binary sentiment classification of financial news headlines, adapted for real-time stock market sentiment prediction.

πŸ” Model Details

  • Architecture: BERT (12-layer, 768-hidden, 12-heads)
  • Base model: ahmedrachid/FinancialBERT-Sentiment-Analysis
  • Fine-tuned task: Binary classification – Positive or Negative
  • Problem type: single_label_classification
  • Special tokens: [CLS], [SEP], [PAD], [MASK], [UNK]

Neutral headlines are mapped to Positive to simplify binary output.

🧾 Training Summary

  • Dataset: 5,000+ manually labeled financial news headlines
  • Tokenizer: Custom WordPiece tokenizer
  • Max sequence length: 128
  • Framework: Transformers v4.51.3 (PyTorch backend)
  • Output labels:
    • LABEL_0 = Negative
    • LABEL_1 = Positive

πŸ“ˆ Intended Use

Ideal for:

  • Real-time market sentiment dashboard
  • Trading signal pipelines
  • Event-driven NLP analysis

πŸš€ Usage (Example)

from transformers import pipeline

classifier = pipeline("text-classification", model="your-username/your-model-name")
classifier("Apple's Q4 earnings beat expectations amid strong iPhone sales")
# Output: [{'label': 'LABEL_1', 'score': 0.98}]
Downloads last month
825
Safetensors
Model size
110M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Spaces using LinkLinkWu/Boss_Stock_News_Analysis 3