Overview
This model is a fine-tuned version of Qwen/Qwen2-7B-Instruct on the LogicNet-Subnet/Aristole dataset. It achieves the following benchmarks on the evaluation set:
- Reliability: 98.53%
- Correctness: 0.9739
Key Details:
- Developed by: LogicNet Team
- License: Apache 2.0
- Base Model: unsloth/qwen2-7b-instruct-bnb-4bit
This fine-tuned Qwen2 model was trained 2x faster using Unsloth and Hugging Face's TRL library.
Model and Training Hyperparameters
Model Configuration:
- dtype:
torch.bfloat16 - load_in_4bit:
True
Prompt Configuration:
- max_seq_length:
2048
PEFT Model Parameters:
- r:
16 - lora_alpha:
16 - lora_dropout:
0 - bias:
"none" - use_gradient_checkpointing:
"unsloth" - random_state:
3407 - use_rslora:
False - loftq_config:
None
Training Arguments:
- per_device_train_batch_size:
2 - gradient_accumulation_steps:
4 - warmup_steps:
5 - max_steps:
70 - learning_rate:
2e-4 - fp16:
not is_bfloat16_supported() - bf16:
is_bfloat16_supported() - logging_steps:
1 - optim:
"adamw_8bit" - weight_decay:
0.01 - lr_scheduler_type:
"linear" - seed:
3407 - output_dir:
"outputs"
Training Results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.4764 | 1.0 | 1150 | 1.1850 |
| 1.3102 | 2.0 | 2050 | 1.1091 |
| 1.1571 | 3.0 | 3100 | 1.0813 |
| 1.0922 | 4.0 | 3970 | 0.9906 |
| 0.9809 | 5.0 | 5010 | 0.9021 |
How To Use
You can easily use the model for inference as shown below:
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model
tokenizer = AutoTokenizer.from_pretrained("LogicNet-Subnet/LogicNet-7B")
model = AutoModelForCausalLM.from_pretrained("LogicNet-Subnet/LogicNet-7B")
# Prepare the input
inputs = tokenizer(
[
"what is odd which is bigger than zero?" # Example prompt
],
return_tensors="pt"
).to("cuda")
# Generate an output
outputs = model.generate(**inputs)
# Decode and print the result
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support