Update README.md
Browse files
README.md
CHANGED
@@ -9,14 +9,94 @@ tags:
|
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
|
16 |
-
- **
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/qwen2-7b-instruct-bnb-4bit
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
12 |
+
datasets:
|
13 |
+
- LogicNet-Subnet/Aristole
|
14 |
---
|
15 |
|
16 |
+
# Overview
|
17 |
|
18 |
+
This model is a fine-tuned version of **Qwen/Qwen2-7B-Instruct** on the **LogicNet-Subnet/Aristole** dataset. It achieves the following benchmarks on the evaluation set:
|
|
|
|
|
19 |
|
20 |
+
- **Reliability**: 98.53%
|
21 |
+
- **Correctness**: 0.9739
|
22 |
|
23 |
+
### Key Details:
|
24 |
+
- **Developed by**: LogicNet Team
|
25 |
+
- **License**: Apache 2.0
|
26 |
+
- **Base Model**: [unsloth/qwen2-7b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-instruct-bnb-4bit)
|
27 |
+
|
28 |
+
This fine-tuned Qwen2 model was trained **2x faster** using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's **TRL** library.
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## Model and Training Hyperparameters
|
33 |
+
|
34 |
+
### Model Configuration:
|
35 |
+
- **dtype**: `torch.bfloat16`
|
36 |
+
- **load_in_4bit**: `True`
|
37 |
+
|
38 |
+
### Prompt Configuration:
|
39 |
+
- **max_seq_length**: `2048`
|
40 |
+
|
41 |
+
### PEFT Model Parameters:
|
42 |
+
- **r**: `16`
|
43 |
+
- **lora_alpha**: `16`
|
44 |
+
- **lora_dropout**: `0`
|
45 |
+
- **bias**: `"none"`
|
46 |
+
- **use_gradient_checkpointing**: `"unsloth"`
|
47 |
+
- **random_state**: `3407`
|
48 |
+
- **use_rslora**: `False`
|
49 |
+
- **loftq_config**: `None`
|
50 |
+
|
51 |
+
### Training Arguments:
|
52 |
+
- **per_device_train_batch_size**: `2`
|
53 |
+
- **gradient_accumulation_steps**: `4`
|
54 |
+
- **warmup_steps**: `5`
|
55 |
+
- **max_steps**: `70`
|
56 |
+
- **learning_rate**: `2e-4`
|
57 |
+
- **fp16**: `not is_bfloat16_supported()`
|
58 |
+
- **bf16**: `is_bfloat16_supported()`
|
59 |
+
- **logging_steps**: `1`
|
60 |
+
- **optim**: `"adamw_8bit"`
|
61 |
+
- **weight_decay**: `0.01`
|
62 |
+
- **lr_scheduler_type**: `"linear"`
|
63 |
+
- **seed**: `3407`
|
64 |
+
- **output_dir**: `"outputs"`
|
65 |
+
|
66 |
+
---
|
67 |
+
|
68 |
+
## Training Results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
72 |
+
| 1.4764 | 1.0 | 1150 | 1.1850 |
|
73 |
+
| 1.3102 | 2.0 | 2050 | 1.1091 |
|
74 |
+
| 1.1571 | 3.0 | 3100 | 1.0813 |
|
75 |
+
| 1.0922 | 4.0 | 3970 | 0.9906 |
|
76 |
+
| 0.9809 | 5.0 | 5010 | 0.9021 |
|
77 |
+
|
78 |
+
|
79 |
+
## How To Use
|
80 |
+
You can easily use the model for inference as shown below:
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
84 |
+
|
85 |
+
# Load the model
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained("LogicNet-Subnet/LogicNet-7B")
|
87 |
+
model = AutoModelForCausalLM.from_pretrained("LogicNet-Subnet/LogicNet-7B")
|
88 |
+
|
89 |
+
# Prepare the input
|
90 |
+
inputs = tokenizer(
|
91 |
+
[
|
92 |
+
"what is odd which is bigger than zero?" # Example prompt
|
93 |
+
],
|
94 |
+
return_tensors="pt"
|
95 |
+
).to("cuda")
|
96 |
+
|
97 |
+
# Generate an output
|
98 |
+
outputs = model.generate(**inputs)
|
99 |
+
|
100 |
+
# Decode and print the result
|
101 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
102 |
+
```
|