bbreoh commited on
Commit
dec60b4
·
verified ·
1 Parent(s): f03a2ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -6
README.md CHANGED
@@ -9,14 +9,94 @@ tags:
9
  license: apache-2.0
10
  language:
11
  - en
 
 
12
  ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** LogicNet-Subnet
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/qwen2-7b-instruct-bnb-4bit
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
12
+ datasets:
13
+ - LogicNet-Subnet/Aristole
14
  ---
15
 
16
+ # Overview
17
 
18
+ This model is a fine-tuned version of **Qwen/Qwen2-7B-Instruct** on the **LogicNet-Subnet/Aristole** dataset. It achieves the following benchmarks on the evaluation set:
 
 
19
 
20
+ - **Reliability**: 98.53%
21
+ - **Correctness**: 0.9739
22
 
23
+ ### Key Details:
24
+ - **Developed by**: LogicNet Team
25
+ - **License**: Apache 2.0
26
+ - **Base Model**: [unsloth/qwen2-7b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-instruct-bnb-4bit)
27
+
28
+ This fine-tuned Qwen2 model was trained **2x faster** using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's **TRL** library.
29
+
30
+ ---
31
+
32
+ ## Model and Training Hyperparameters
33
+
34
+ ### Model Configuration:
35
+ - **dtype**: `torch.bfloat16`
36
+ - **load_in_4bit**: `True`
37
+
38
+ ### Prompt Configuration:
39
+ - **max_seq_length**: `2048`
40
+
41
+ ### PEFT Model Parameters:
42
+ - **r**: `16`
43
+ - **lora_alpha**: `16`
44
+ - **lora_dropout**: `0`
45
+ - **bias**: `"none"`
46
+ - **use_gradient_checkpointing**: `"unsloth"`
47
+ - **random_state**: `3407`
48
+ - **use_rslora**: `False`
49
+ - **loftq_config**: `None`
50
+
51
+ ### Training Arguments:
52
+ - **per_device_train_batch_size**: `2`
53
+ - **gradient_accumulation_steps**: `4`
54
+ - **warmup_steps**: `5`
55
+ - **max_steps**: `70`
56
+ - **learning_rate**: `2e-4`
57
+ - **fp16**: `not is_bfloat16_supported()`
58
+ - **bf16**: `is_bfloat16_supported()`
59
+ - **logging_steps**: `1`
60
+ - **optim**: `"adamw_8bit"`
61
+ - **weight_decay**: `0.01`
62
+ - **lr_scheduler_type**: `"linear"`
63
+ - **seed**: `3407`
64
+ - **output_dir**: `"outputs"`
65
+
66
+ ---
67
+
68
+ ## Training Results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss |
71
+ |:-------------:|:-----:|:----:|:---------------:|
72
+ | 1.4764 | 1.0 | 1150 | 1.1850 |
73
+ | 1.3102 | 2.0 | 2050 | 1.1091 |
74
+ | 1.1571 | 3.0 | 3100 | 1.0813 |
75
+ | 1.0922 | 4.0 | 3970 | 0.9906 |
76
+ | 0.9809 | 5.0 | 5010 | 0.9021 |
77
+
78
+
79
+ ## How To Use
80
+ You can easily use the model for inference as shown below:
81
+
82
+ ```python
83
+ from transformers import AutoTokenizer, AutoModelForCausalLM
84
+
85
+ # Load the model
86
+ tokenizer = AutoTokenizer.from_pretrained("LogicNet-Subnet/LogicNet-7B")
87
+ model = AutoModelForCausalLM.from_pretrained("LogicNet-Subnet/LogicNet-7B")
88
+
89
+ # Prepare the input
90
+ inputs = tokenizer(
91
+ [
92
+ "what is odd which is bigger than zero?" # Example prompt
93
+ ],
94
+ return_tensors="pt"
95
+ ).to("cuda")
96
+
97
+ # Generate an output
98
+ outputs = model.generate(**inputs)
99
+
100
+ # Decode and print the result
101
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
102
+ ```