File size: 4,854 Bytes
ed6b901
15eb8ca
ed6b901
15eb8ca
 
 
bf46039
 
 
15eb8ca
 
 
bf46039
 
 
 
ed6b901
 
bf46039
ed6b901
bf46039
ed6b901
bf46039
ed6b901
bf46039
ed6b901
bf46039
 
 
 
 
ed6b901
 
 
 
 
bf46039
 
 
 
 
ed6b901
bf46039
ed6b901
bf46039
 
 
 
 
ed6b901
 
 
bf46039
 
 
 
 
ed6b901
 
 
bf46039
 
 
 
 
ed6b901
 
 
bf46039
 
 
 
 
ed6b901
 
 
bf46039
 
ed6b901
bf46039
 
 
ed6b901
bf46039
 
 
 
 
 
 
 
ed6b901
bf46039
ed6b901
bf46039
 
ed6b901
bf46039
 
 
 
ed6b901
bf46039
ed6b901
bf46039
ed6b901
bf46039
 
 
 
ed6b901
bf46039
ed6b901
bf46039
 
 
 
ed6b901
 
bf46039
 
 
 
 
ed6b901
 
 
bf46039
 
 
ed6b901
bf46039
 
 
 
ed6b901
 
bf46039
ed6b901
bf46039
ed6b901
bf46039
 
 
 
ed6b901
 
bf46039
 
 
ed6b901
bf46039
ed6b901
bf46039
ed6b901
bf46039
 
 
 
 
 
 
 
ed6b901
bf46039
ed6b901
bf46039
 
ed6b901
bf46039
ed6b901
bf46039
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: mit
tags:
  - linux
  - bugfix
  - codellama
  - qlora
  - transformers
  - causal-lm
model_type: causal-lm
library_name: transformers
pipeline_tag: text-generation
base_model: codellama/CodeLLaMA-7b-Instruct-hf
language:
  - en
  - c
---

# CodeLLaMA-Linux-BugFix

A fine-tuned CodeLLaMA-7B-Instruct model specifically designed for Linux kernel bug fixing. This model generates Git diff patches from buggy C code and commit messages.

## Model Description

This model is a QLoRA fine-tuned version of CodeLLaMA-7B-Instruct, trained on a dataset of Linux kernel bug fixes extracted from Git commits. It learns to generate appropriate Git diff patches that can fix bugs in C code.

- **Developed by:** Maaac
- **Model type:** Causal Language Model (QLoRA fine-tuned)
- **Language(s):** English, C
- **License:** MIT
- **Finetuned from model:** codellama/CodeLLaMA-7b-Instruct-hf

## Uses

### Direct Use

This model is designed to:
- Generate Git diff patches for Linux kernel bug fixes
- Assist developers in fixing common kernel bugs
- Provide automated code review suggestions
- Help with learning Linux kernel development patterns

### Downstream Use

The model can be integrated into:
- Automated code review systems
- Development IDEs and editors
- Continuous integration pipelines
- Educational tools for kernel development

### Out-of-Scope Use

This model is not suitable for:
- Non-Linux kernel code
- Non-C programming languages
- Security-critical applications without human review
- Production systems without proper validation

## Bias, Risks, and Limitations

### Limitations
- Focused specifically on Linux kernel C code
- May not generalize to other codebases
- Generated fixes should be reviewed by human developers
- Limited to the patterns present in the training data

### Recommendations

Users should:
- Always review generated patches before applying
- Test fixes in a safe environment first
- Understand the context of the bug being fixed
- Use as a development aid, not a replacement for human expertise

## How to Get Started with the Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model
model = AutoModelForCausalLM.from_pretrained("Maaac/CodeLLaMA-Linux-BugFix")
tokenizer = AutoTokenizer.from_pretrained("Maaac/CodeLLaMA-Linux-BugFix")

# Example usage
prompt = """Given the following original C code:
int *ptr = kmalloc(sizeof(int), GFP_KERNEL);
if (!ptr) {
    return -ENOMEM;
}
// ... use ptr ...
// Missing kfree(ptr)

Instruction: Fix memory leak by adding proper cleanup

Return the diff that fixes it:
"""

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Training Details

### Training Data

- **Source:** Linux kernel Git repository
- **Size:** 100,000 bug-fix samples
- **Format:** JSONL with prompt-completion pairs
- **Extraction Method:** PyDriller analysis of commit history

### Training Procedure

#### Preprocessing
- Extracted bug-fix commits using keyword filtering
- Captured code context (10 lines before/after bug location)
- Converted to prompt-completion format for supervised learning

#### Training Hyperparameters
- **Base Model:** codellama/CodeLLaMA-7b-Instruct-hf
- **Method:** QLoRA with 4-bit quantization
- **LoRA Config:** r=64, alpha=16, dropout=0.1
- **Training:** 3 epochs, batch size 64, learning rate 2e-4
- **Hardware:** Optimized for H200 GPU with bfloat16

## Evaluation

### Testing Data
- Separate evaluation dataset with known bug-fix pairs
- Focused on common Linux kernel bug patterns

### Metrics
- **BLEU Score:** Measures translation quality of generated diffs
- **ROUGE Score:** Evaluates overlap between predicted and actual fixes
- **Human Evaluation:** Qualitative assessment of fix quality

### Results
The model demonstrates the ability to generate contextually appropriate Git diff patches for Linux kernel bugs, though results should be validated by human developers.

## Technical Specifications

### Model Architecture
- **Base:** CodeLLaMA-7B-Instruct (7 billion parameters)
- **Adapter:** LoRA layers for efficient fine-tuning
- **Output:** Generates Git diff format patches

### Compute Infrastructure
- **Hardware:** H200 GPU
- **Framework:** PyTorch with Transformers
- **Quantization:** 4-bit QLoRA for memory efficiency

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{CodeLLaMA-Linux-BugFix,
  author = {Maaac},
  title = {CodeLLaMA-Linux-BugFix: A Fine-tuned Model for Linux Kernel Bug Fixing},
  year = {2024},
  url = {https://huggingface.co/Maaac/CodeLLaMA-Linux-BugFix}
}
```

## Model Card Authors

- **Author:** Maaac
- **Contact:** [Your contact information]

## Framework Versions

- PEFT 0.16.0
- Transformers 4.53.1
- PyTorch 2.7.1