|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Optional |
|
|
|
from transformers import Trainer |
|
from typing_extensions import override |
|
|
|
from ...extras.logging import get_logger |
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler |
|
|
|
|
|
if TYPE_CHECKING: |
|
import torch |
|
from transformers import ProcessorMixin |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class CustomTrainer(Trainer): |
|
r""" |
|
Inherits Trainer for custom optimizer. |
|
""" |
|
|
|
def __init__( |
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.finetuning_args = finetuning_args |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.pissa_convert: |
|
self.add_callback(PissaConvertCallback) |
|
|
|
if finetuning_args.use_badam: |
|
from badam import BAdamCallback, clip_grad_norm_old_version |
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) |
|
self.add_callback(BAdamCallback) |
|
|
|
@override |
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
@override |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|