Text Generation
Transformers
Safetensors
English
Russian
mistral
conversational
text-generation-inference
leaderboard-pr-bot's picture
Adding Evaluation Results
0f8ff39 verified
|
raw
history blame
9.09 kB
metadata
language:
  - ru
  - en
license: mit
library_name: transformers
tags:
  - python
  - code
datasets:
  - MexIvanov/Vezora-Tested-22k-Python-Alpaca-ru
  - MexIvanov/CodeExercise-Python-27k-ru
  - zelkame/ru-stackoverflow-py
base_model: HuggingFaceH4/zephyr-7b-beta
pipeline_tag: conversational
model-index:
  - name: zephyr-python-ru-merged
    results:
      - task:
          type: text-generation
        dataset:
          name: gsm8k
          type: gsm8k
        metrics:
          - type: Grade School Math 8K (5-Shot)
            value: 32.52
            name: Grade School Math 8K (5-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
        dataset:
          name: ai2_arc
          type: ai2_arc
        metrics:
          - type: AI2 Reasoning Challenge (25-Shot)
            value: 56.06
            name: AI2 Reasoning Challenge (25-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
        dataset:
          name: HellaSwag
          type: HellaSwag
        metrics:
          - type: HellaSwag (10-Shot)
            value: 82.06
            name: HellaSwag (10-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
        dataset:
          name: MMLU
          type: MMLU
        metrics:
          - type: MMLU (5-Shot)
            value: 60.02
            name: MMLU (5-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
        dataset:
          name: truthfulqa
          type: truthfulqa
        metrics:
          - type: truthfulqa:mc (0-Shot)
            value: 52.81
            name: truthfulqa:mc (0-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - type: winogrande (5-Shot)
            value: 76.95
            name: winogrande (5-Shot)
        source:
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 56.06
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.06
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.2
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 52.81
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.95
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.52
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MexIvanov/zephyr-python-ru-merged
          name: Open LLM Leaderboard

Model Card for Model ID

Model Details

Model Description

  • Developed by: C.B. Pronin, A.V. Volosova, A.V. Ostroukh, Yu.N. Strogov, V.V. Kurbatov, A.S. Umarova.
  • Model type: Base model HuggingFaceH4/zephyr-7b-beta merged with LoRA (Peft) adapter model MexIvanov/zephyr-python-ru trained on a mix of publicly available data and machine-translated synthetic python coding datasets.
  • Language(s) (NLP): Russian, English, Python
  • License: MIT
  • Finetuned from model: HuggingFaceH4/zephyr-7b-beta

Model Sources

  • Repository: Comming soon...
  • Paper: Comming soon...

Uses

An experimental finetune of Zephyr-7b-beta, aimed at improving coding performance and support for coding-related instructions written in Russian language.

Direct Use

Instruction-based coding in Python, based of instructions written in natural language (English or Russian)

Prompt template - Zephyr:

<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>

Bias, Risks, and Limitations

This adapter model is intended (but not limited) for research usage only. It was trained on a code based instruction set and it does not have any moderation mechanisms. Use at your own risk, we are not responsible for any usage or output of this model.

Quote from Zephyr (base-model) repository: "Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (mistralai/Mistral-7B-v0.1), however it is likely to have included a mix of Web data and technical sources like books and code. See the Falcon 180B model card for an example of this."

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.6.2

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.6.2

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.10
AI2 Reasoning Challenge (25-Shot) 56.06
HellaSwag (10-Shot) 82.06
MMLU (5-Shot) 60.20
TruthfulQA (0-shot) 52.81
Winogrande (5-shot) 76.95
GSM8k (5-shot) 32.52