wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5253
  • Wer: 0.3406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4884 1.0 500 1.6139 1.0293
0.8373 2.01 1000 0.5286 0.5266
0.4394 3.01 1500 0.4933 0.4678
0.2974 4.02 2000 0.4159 0.4268
0.2268 5.02 2500 0.4288 0.4074
0.1901 6.02 3000 0.4407 0.3852
0.1627 7.03 3500 0.4599 0.3849
0.1397 8.03 4000 0.4330 0.3803
0.1342 9.04 4500 0.4661 0.3785
0.1165 10.04 5000 0.4518 0.3745
0.1 11.04 5500 0.4714 0.3899
0.0881 12.05 6000 0.4985 0.3848
0.0794 13.05 6500 0.5074 0.3672
0.0707 14.06 7000 0.5692 0.3681
0.0669 15.06 7500 0.4722 0.3814
0.0589 16.06 8000 0.5738 0.3784
0.0562 17.07 8500 0.5183 0.3696
0.0578 18.07 9000 0.5473 0.3841
0.0473 19.08 9500 0.4918 0.3655
0.0411 20.08 10000 0.5258 0.3517
0.0419 21.08 10500 0.5256 0.3501
0.0348 22.09 11000 0.5511 0.3597
0.0328 23.09 11500 0.5054 0.3560
0.0314 24.1 12000 0.5327 0.3537
0.0296 25.1 12500 0.5142 0.3446
0.0251 26.1 13000 0.5155 0.3411
0.0249 27.11 13500 0.5344 0.3414
0.0225 28.11 14000 0.5193 0.3408
0.0226 29.12 14500 0.5253 0.3406

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support