model-index:
- name: TSLAM-Mini-2B
results:
- task:
type: domain-modeling
dataset:
type: telecom-eval-suite
name: Telecom Internal Benchmark
metrics:
- type: accuracy
value: 88.2
- task:
type: open-domain-qa
dataset:
type: bigbench-hard
name: BIG-Bench Hard
metrics:
- type: accuracy
value: 70.4
- task:
type: question-answering
dataset:
type: mmlu
name: MMLU
metrics:
- type: accuracy
value: 67.3
- task:
type: commonsense-reasoning
dataset:
type: arc
name: ARC Challenge
metrics:
- type: accuracy
value: 83.7
- task:
type: boolean-classification
dataset:
type: boolq
name: BoolQ
metrics:
- type: accuracy
value: 81.2
- task:
type: question-answering
dataset:
type: gpqa
name: GPQA
metrics:
- type: accuracy
value: 25.2
- task:
type: commonsense-reasoning
dataset:
type: hellaswag
name: HellaSwag
metrics:
- type: accuracy
value: 69.1
- task:
type: open-book-qa
dataset:
type: openbookqa
name: OpenBookQA
metrics:
- type: accuracy
value: 79.2
- task:
type: physical-reasoning
dataset:
type: piqa
name: PIQA
metrics:
- type: accuracy
value: 77.6
- task:
type: social-intelligence
dataset:
type: socialiqa
name: Social IQa
metrics:
- type: accuracy
value: 72.5
- task:
type: truthfulness
dataset:
type: truthfulqa
name: TruthfulQA
metrics:
- type: accuracy
value: 66.4
- task:
type: winograd-schema
dataset:
type: winogrande
name: WinoGrande
metrics:
- type: accuracy
value: 67
- task:
type: question-answering
dataset:
type: mmlu
name: MMLU (Multilingual)
metrics:
- type: accuracy
value: 49.3
- task:
type: mathematical-reasoning
dataset:
type: mgsm
name: MGSM
metrics:
- type: accuracy
value: 63.9
- task:
type: mathematical-reasoning
dataset:
type: gsm8k
name: GSM8K
metrics:
- type: accuracy
value: 88.6
- task:
type: mathematical-reasoning
dataset:
type: math
name: MATH
metrics:
- type: accuracy
value: 64
extra_gated_prompt: Please provide answers to the below questions to gain access to the model
extra_gated_fields:
Company: text
Full Name: text
Email: text
I want to use this model for:
type: select
options:
- Research
- Education
- Commercial
- label: Other
value: other
TSLAM-Mini-2B
Base Model: microsoft/Phi-4-mini-instruct
License: MIT
Overview
TSLAM-Mini-2B is a domain-adapted language model fine-tuned on 100,000 telecom-specific examples, designed to emulate the intelligence and conversational expertise of a Telecom Subject Matter Expert (SME). Built on top of the Phi-4-mini-instruct foundation, TSLAM-Mini-2B is optimized for real-time, industry-grade interactions across key telecom scenarios, including:
- SME-style responses in customer support and internal queries
- Network configuration, diagnostics, and troubleshooting workflows
- Device provisioning and service activation dialogues
- Operational support for field and NOC teams
- Intelligent retrieval and summarization of telecom-specific documentation
This fine-tuning strategy enables TSLAM-Mini-2B to reason like an SME, offering accurate, context-aware responses that align with real-world telecom operations. Though this model offers superior performance on Telecom specific usecases, For enterprises requiring specialized capabilities please contact us [email protected] for our enterprise grade commercial models which offers greater capabilities required for production.
Key Features
- Telecom-Tuned: Finetuned on domain-specific conversations, logs, and structured dialogues.
- Instruction-Following: Retains Phi-4’s compact instruction-tuned behavior while adapting to industry-specific patterns.
- Real-Time Scenarios: Performs well in use cases that require contextual understanding of real-world telecom operations.
Intended Use
The areas TSLAM-Mini-2B excels in are:
- Customer Support Agents (AI copilots or chatbots)
- Network Operations Tools that process commands or log queries
- Internal Assistants for engineers and field technicians
- Telecom Knowledge Graphs & RAG Pipelines
Model Details
Property | Value |
---|---|
Base Model | microsoft/Phi-4-mini-instruct |
Fine-tuning Data | 100k telecom domain examples |
Training Method | Supervised fine-tuning (SFT) |
License | MIT |
Benchmarks Results
Benchmark | TSLAM-Mini-2B | Phi-3.5-mini-Ins | Llama-3.2-3B-Ins | Mistral-3B | Qwen2.5-3B-Ins | Qwen2.5-7B-Ins | Mistral-8B-2410 | Llama-3.1-8B-Ins | Llama-3.1-Tulu-3-8B | Gemma2-9B-Ins | GPT-4o-mini-2024-07-18 |
---|---|---|---|---|---|---|---|---|---|---|---|
Popular aggregated benchmark | |||||||||||
Arena Hard | 32.8 | 34.4 | 17.0 | 26.9 | 32.0 | 55.5 | 37.3 | 25.7 | 42.7 | 43.7 | 53.7 |
BigBench Hard (0-shot, CoT) | 70.4 | 63.1 | 55.4 | 51.2 | 56.2 | 72.4 | 53.3 | 63.4 | 55.5 | 65.7 | 80.4 |
MMLU (5-shot) | 67.3 | 65.5 | 61.8 | 60.8 | 65.0 | 72.6 | 63.0 | 68.1 | 65.0 | 71.3 | 77.2 |
MMLU-Pro (0-shot, CoT) | 52.8 | 47.4 | 39.2 | 35.3 | 44.7 | 56.2 | 36.6 | 44.0 | 40.9 | 50.1 | 62.8 |
Reasoning | |||||||||||
ARC Challenge (10-shot) | 83.7 | 84.6 | 76.1 | 80.3 | 82.6 | 90.1 | 82.7 | 83.1 | 79.4 | 89.8 | 93.5 |
BoolQ (2-shot) | 81.2 | 77.7 | 71.4 | 79.4 | 65.4 | 80.0 | 80.5 | 82.8 | 79.3 | 85.7 | 88.7 |
GPQA (0-shot, CoT) | 25.2 | 26.6 | 24.3 | 24.4 | 23.4 | 30.6 | 26.3 | 26.3 | 29.9 | 39.1 | 41.1 |
HellaSwag (5-shot) | 69.1 | 72.2 | 77.2 | 74.6 | 74.6 | 80.0 | 73.5 | 72.8 | 80.9 | 87.1 | 88.7 |
OpenBookQA (10-shot) | 79.2 | 81.2 | 72.6 | 79.8 | 79.3 | 82.6 | 80.2 | 84.8 | 79.8 | 90.0 | 90.0 |
PIQA (5-shot) | 77.6 | 78.2 | 68.2 | 73.2 | 72.6 | 76.2 | 81.2 | 83.2 | 78.3 | 83.7 | 88.7 |
Social IQA (5-shot) | 72.5 | 75.1 | 68.3 | 73.9 | 75.3 | 75.3 | 77.6 | 71.8 | 73.4 | 74.7 | 82.9 |
TruthfulQA (MC2) (10-shot) | 66.4 | 65.2 | 59.2 | 62.9 | 64.3 | 69.4 | 63.0 | 69.2 | 64.1 | 76.6 | 78.2 |
Winogrande (5-shot) | 67.0 | 72.2 | 53.2 | 59.8 | 63.3 | 71.1 | 63.1 | 64.7 | 65.4 | 74.0 | 76.9 |
Multilingual | |||||||||||
Multilingual MMLU (5-shot) | 49.3 | 51.8 | 48.1 | 46.4 | 55.9 | 64.4 | 53.7 | 56.2 | 54.5 | 63.8 | 72.9 |
MGSM (0-shot, CoT) | 63.9 | 49.6 | 44.6 | 44.6 | 53.5 | 64.5 | 56.7 | 56.7 | 58.6 | 75.1 | 81.7 |
Math | |||||||||||
GSM8K (8-shot, CoT) | 88.6 | 76.9 | 75.6 | 80.1 | 80.6 | 88.7 | 81.9 | 82.4 | 84.3 | 84.9 | 91.3 |
MATH (0-shot, CoT) | 64.0 | 49.8 | 46.7 | 41.8 | 61.7 | 60.4 | 41.6 | 47.6 | 46.1 | 51.3 | 70.2 |
Telecom (domain-specific) | 88.2 | 52.1 | 47.6 | 49.3 | 58.0 | 61.5 | 54.9 | 57.3 | 59.0 | 64.1 | 70.3 |
Overall | 63.5 | 60.5 | 56.2 | 56.9 | 60.1 | 67.9 | 60.2 | 62.3 | 60.9 | 65.0 | 75.5 |
Example
**User**: How do I reconfigure a 5G core node remotely?
**Model**: To reconfigure a 5G core node remotely, ensure you have SSH access enabled and the necessary configuration scripts preloaded. From your NOC terminal, run the secure update command with the node's IP and authentication key...
How to Use
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load tokenizer and model
model_name = "NetoAISolutions/TSLAM-Mini-2B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define the input using the Phi-style chat template
def build_prompt(user_input):
system = "<|system|>\nYou are a helpful assistant.<|end|>\n"
user = f"<|user|>\n{user_input}<|end|>\n"
assistant = "<|assistant|>\n" # Start assistant response
return system + user + assistant
# Example input
user_query = "How do I activate VoLTE on a user's device?"
prompt = build_prompt(user_query)
# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.convert_tokens_to_ids("<|end|>")
)
# Decode output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Acknowledgements
- Built on top of Microsoft’s Phi-4-mini-instruct
- Data curation and tuning by NetoAISolutions