7Gen / 7gen.py
NextGenC's picture
Upload 24 files
8add310 verified
# 7Gen - MNIST için Gelişmiş Üretici Model
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
print("🚀 7Gen - Gelişmiş MNIST Üretici Sistemi 🚀")
# Cihaz ayarları
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Kullanılan cihaz: {device}')
# Hiperparametreler
batch_size = 64
latent_dim = 100
num_classes = 10
num_epochs = 100
lr = 0.0002
# Veri yükleme
transform = transforms.Compose([
transforms.ToTensor(), # Burayı düzelttim
transforms.Normalize([0.5], [0.5])
])
dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Generator modeli
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(latent_dim + num_classes, 256),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(256),
nn.Linear(256, 512),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(512),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(1024),
nn.Linear(1024, 784),
nn.Tanh()
)
def forward(self, noise, labels):
label_embedding = self.label_emb(labels)
gen_input = torch.cat((noise, label_embedding), -1)
img = self.model(gen_input)
img = img.view(img.size(0), 1, 28, 28)
return img
# Discriminator modeli
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(784 + num_classes, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, img, labels):
img_flat = img.view(img.size(0), -1)
label_embedding = self.label_emb(labels)
d_input = torch.cat((img_flat, label_embedding), -1)
validity = self.model(d_input)
return validity
# Model oluşturma
generator = Generator().to(device)
discriminator = Discriminator().to(device)
# Loss ve optimizer
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
# Klasör oluştur
os.makedirs('generated_images', exist_ok=True)
# Eğitim
print("\n🔥 7Gen Eğitimi Başlıyor...")
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}")):
imgs = imgs.to(device)
labels = labels.to(device)
batch_size = imgs.size(0)
# Ground truth'lar
valid = torch.ones(batch_size, 1).to(device)
fake = torch.zeros(batch_size, 1).to(device)
# Generator eğitimi
optimizer_G.zero_grad()
z = torch.randn(batch_size, latent_dim).to(device)
gen_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
gen_imgs = generator(z, gen_labels)
g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)
g_loss.backward()
optimizer_G.step()
# Discriminator eğitimi
optimizer_D.zero_grad()
real_loss = adversarial_loss(discriminator(imgs, labels), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
print(f"Epoch {epoch+1}/{num_epochs} - D loss: {d_loss:.4f}, G loss: {g_loss:.4f}")
# Her 10 epoch'ta örnek üret
if (epoch + 1) % 10 == 0:
with torch.no_grad():
z = torch.randn(100, latent_dim).to(device)
labels = torch.tensor([i for i in range(10) for _ in range(10)]).to(device)
gen_imgs = generator(z, labels)
gen_imgs = (gen_imgs + 1) / 2
fig, axes = plt.subplots(10, 10, figsize=(10, 10))
for i in range(10):
for j in range(10):
idx = i * 10 + j
axes[i, j].imshow(gen_imgs[idx][0].cpu().numpy(), cmap='gray')
axes[i, j].axis('off')
plt.savefig(f'generated_images/7gen_epoch_{epoch+1}.png')
plt.close()
# Model kaydetme
os.makedirs('models', exist_ok=True)
torch.save(generator.state_dict(), 'models/7gen_generator.pth')
torch.save(discriminator.state_dict(), 'models/7gen_discriminator.pth')
print("\n✅ 7Gen eğitimi tamamlandı!")
# Kullanım örneği
def generate_digit(digit, num_samples=5):
generator.eval()
with torch.no_grad():
z = torch.randn(num_samples, latent_dim).to(device)
labels = torch.full((num_samples,), digit).to(device)
gen_imgs = generator(z, labels)
gen_imgs = (gen_imgs + 1) / 2
plt.figure(figsize=(10, 2))
for i in range(num_samples):
plt.subplot(1, num_samples, i+1)
plt.imshow(gen_imgs[i][0].cpu().numpy(), cmap='gray')
plt.axis('off')
plt.savefig(f'generated_images/digit_{digit}_samples.png')
plt.show()
# Test et
print("\n🎯 Test örnekleri üretiliyor...")
for digit in range(10):
generate_digit(digit, num_samples=5)
print("\n🎉 7Gen hazır! generated_images klasörüne bak.")