| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- multilingual | 
					
					
						
						| 
							 | 
						- ar | 
					
					
						
						| 
							 | 
						- zh | 
					
					
						
						| 
							 | 
						- cs | 
					
					
						
						| 
							 | 
						- da | 
					
					
						
						| 
							 | 
						- nl | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						- fi | 
					
					
						
						| 
							 | 
						- fr | 
					
					
						
						| 
							 | 
						- de | 
					
					
						
						| 
							 | 
						- he | 
					
					
						
						| 
							 | 
						- hu | 
					
					
						
						| 
							 | 
						- it | 
					
					
						
						| 
							 | 
						- ja | 
					
					
						
						| 
							 | 
						- ko | 
					
					
						
						| 
							 | 
						- 'no' | 
					
					
						
						| 
							 | 
						- pl | 
					
					
						
						| 
							 | 
						- pt | 
					
					
						
						| 
							 | 
						- ru | 
					
					
						
						| 
							 | 
						- es | 
					
					
						
						| 
							 | 
						- sv | 
					
					
						
						| 
							 | 
						- th | 
					
					
						
						| 
							 | 
						- tr | 
					
					
						
						| 
							 | 
						- uk | 
					
					
						
						| 
							 | 
						license: mit | 
					
					
						
						| 
							 | 
						license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE | 
					
					
						
						| 
							 | 
						pipeline_tag: text-generation | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- nlp | 
					
					
						
						| 
							 | 
						- code | 
					
					
						
						| 
							 | 
						base_model: microsoft/Phi-4-mini-instruct | 
					
					
						
						| 
							 | 
						base_model_relation: quantized | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						# Phi-4-mini-instruct-int4-ov | 
					
					
						
						| 
							 | 
						* Model creator: [Microsoft](https://huggingface.co/microsoft) | 
					
					
						
						| 
							 | 
						* Original model: [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Description | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This is [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Quantization Parameters | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Weight compression was performed using `nncf.compress_weights` with the following parameters: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						* mode: **INT4_ASYM** | 
					
					
						
						| 
							 | 
						* ratio: **1.0** | 
					
					
						
						| 
							 | 
						* group_size: **64** | 
					
					
						
						| 
							 | 
						* awq: **True** | 
					
					
						
						| 
							 | 
						* scale_estimation: **True** | 
					
					
						
						| 
							 | 
						* dataset: [wikitext2](https://huggingface.co/datasets/mindchain/wikitext2) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Compatibility | 
					
					
						
						| 
							 | 
						The provided OpenVINO™ IR model is compatible with: | 
					
					
						
						| 
							 | 
						* OpenVINO version 2025.1.0 and higher | 
					
					
						
						| 
							 | 
						* Optimum Intel 1.22.0 and higher | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						pip install optimum[openvino] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						2. Run model inference: | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer | 
					
					
						
						| 
							 | 
						from optimum.intel.openvino import OVModelForCausalLM | 
					
					
						
						| 
							 | 
						model_id = "OpenVINO/Phi-4-mini-instruct-int4-ov" | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						model = OVModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						inputs = tokenizer("What is OpenVINO?", return_tensors="pt") | 
					
					
						
						| 
							 | 
						outputs = model.generate(**inputs, max_length=200) | 
					
					
						
						| 
							 | 
						text = tokenizer.batch_decode(outputs)[0] | 
					
					
						
						| 
							 | 
						print(text) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						For more examples and possible optimizations, refer to [the Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						1. Install packages required for using OpenVINO GenAI. | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						pip install -U openvino openvino-tokenizers openvino-genai | 
					
					
						
						| 
							 | 
						pip install huggingface_hub | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						2. Download model from HuggingFace Hub | 
					
					
						
						| 
							 | 
						    | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						import huggingface_hub as hf_hub | 
					
					
						
						| 
							 | 
						model_id = "OpenVINO/Phi-4-mini-instruct-int4-ov" | 
					
					
						
						| 
							 | 
						model_path = "Phi-4-mini-instruct-int4-ov" | 
					
					
						
						| 
							 | 
						hf_hub.snapshot_download(model_id, local_dir=model_path) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						3. Run model inference: | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						import openvino_genai as ov_genai | 
					
					
						
						| 
							 | 
						device = "CPU" | 
					
					
						
						| 
							 | 
						pipe = ov_genai.LLMPipeline(model_path, device) | 
					
					
						
						| 
							 | 
						print(pipe.generate("What is OpenVINO?", max_length=200)) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						You can find more detaild usage examples in OpenVINO Notebooks: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) | 
					
					
						
						| 
							 | 
						- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Limitations | 
					
					
						
						| 
							 | 
						Check the original model card for [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct) for limitations. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Legal information | 
					
					
						
						| 
							 | 
						The original model is distributed under [mit](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE) license. More details can be found in [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Disclaimer | 
					
					
						
						| 
							 | 
						Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |