ch_RepSVTR_rec / README.md
Tingquan's picture
Upload folder using huggingface_hub
ee4c154 verified
---
license: apache-2.0
library_name: PaddleOCR
language:
- en
- zh
pipeline_tag: image-to-text
tags:
- OCR
- PaddlePaddle
- PaddleOCR
---
# ch_RepSVTR_rec
## Introduction
RepSVTR is a mobile-side text recognition model based on SVTRv2. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 2.5% improvement in end-to-end recognition accuracy on Leaderboard B compared to PP-OCRv4, while maintaining similar inference speed. It supports text line recognition in general Chinese and English scenarios, but mainly focuses on Chinese. The key accuracy metrics are as follow:
<table>
<tr>
<th>Model</th>
<th>Recognition Avg Accuracy(%)</th>
<th>Model Storage Size (M)</th>
</tr>
<tr>
<td>ch_RepSVTR_rec</td>
<td>65.07</td>
<td>22.1 M</td>
</tr>
</table>
**Note**: If any character (including punctuation) in a line was incorrect, the entire line was marked as wrong. This ensures higher accuracy in practical applications.
## Quick Start
### Installation
1. PaddlePaddle
Please refer to the following commands to install PaddlePaddle using pip:
```bash
# for CUDA11.8
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
# for CUDA12.6
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
# for CPU
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
```
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
2. PaddleOCR
Install the latest version of the PaddleOCR inference package from PyPI:
```bash
python -m pip install paddleocr
```
### Model Usage
You can quickly experience the functionality with a single command:
```bash
paddleocr text_recognition \
--model_name ch_RepSVTR_rec \
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
```
You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
```python
from paddleocr import TextRecognition
model = TextRecognition(model_name="ch_RepSVTR_rec")
output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
```
After running, the obtained result is as follows:
```json
{'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9997341632843018}}
```
The visualized image is as follows:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/Qx9YVOh1-P5i7HbG2oOtq.png)
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
### Pipeline Usage
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
#### PP-OCR
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
* Document Image Orientation Classification Module (Optional)
* Text Image Unwarping Module (Optional)
* Text Line Orientation Classification Module (Optional)
* Text Detection Module
* Text Recognition Module
Run a single command to quickly experience the OCR pipeline:
```bash
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png \
--text_recognition_model_name ch_RepSVTR_rec \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation True \
--save_path ./output \
--device gpu:0
```
Results are printed to the terminal:
```json
{'res': {'input_path': '/root/.paddlex/predict_input/818ebrVG4OtH3sjLR-NRI.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 0, 10],
...,
[ 0, 72]],
...,
[[189, 915],
...,
[190, 960]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([1, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['等将海中中:0028866', 'PASS', '登机牌', 'BOARDING', '座位号', 'SEAT NO.', '舱位', 'CLASS', '序号', '日期DATE', 'SERIAL NO.', '航班FLIGHT', 'W', '035', 'MU237903DEC', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名', 'NAME', 'ZHANGQIWEI', '票号TKTNO', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前1O分钟关闭GATESCLOSE10MINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.58707291, ..., 0.98247343]), 'rec_polys': array([[[ 0, 10],
...,
[ 0, 72]],
...,
[[189, 915],
...,
[190, 960]]], dtype=int16), 'rec_boxes': array([[ 0, ..., 72],
...,
[189, ..., 960]], dtype=int16)}}
```
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/MtNNXEOE4Uz9oi3v3cmgU.png)
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(
text_recognition_model_name="ch_RepSVTR_rec",
use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
device="gpu:0", # Use device to specify GPU for model inference
)
result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png")
for res in result:
res.print()
res.save_to_img("output")
res.save_to_json("output")
```
The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `ch_RepSVTR_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
## Links
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)