Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2469150
#!/usr/bin/env python3 | |
""" | |
Debug script to check the actual data structure and values | |
""" | |
import os | |
import sys | |
import pandas as pd | |
import numpy as np | |
from datetime import datetime | |
# Add src to path | |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) | |
from src.core.enhanced_fred_client import EnhancedFREDClient | |
def debug_data_structure(): | |
"""Debug the data structure and values""" | |
api_key = "acf8bbec7efe3b6dfa6ae083e7152314" | |
print("=== DEBUGGING DATA STRUCTURE ===") | |
try: | |
# Initialize FRED client | |
client = EnhancedFREDClient(api_key) | |
# Fetch economic data | |
end_date = datetime.now() | |
start_date = end_date.replace(year=end_date.year - 1) | |
print("1. Fetching economic data...") | |
data = client.fetch_economic_data( | |
start_date=start_date.strftime('%Y-%m-%d'), | |
end_date=end_date.strftime('%Y-%m-%d') | |
) | |
if data.empty: | |
print("β No data fetched") | |
return | |
print(f"β Fetched data shape: {data.shape}") | |
print(f" Date range: {data.index.min()} to {data.index.max()}") | |
print(f" Columns: {list(data.columns)}") | |
print() | |
# Check each indicator | |
for column in data.columns: | |
series = data[column].dropna() | |
print(f"2. Analyzing {column}:") | |
print(f" Total observations: {len(data[column])}") | |
print(f" Non-null observations: {len(series)}") | |
print(f" Latest value: {series.iloc[-1] if len(series) > 0 else 'N/A'}") | |
if len(series) >= 2: | |
growth_rate = series.pct_change().iloc[-1] * 100 | |
print(f" Latest growth rate: {growth_rate:.2f}%") | |
else: | |
print(f" Growth rate: Insufficient data") | |
if len(series) >= 13: | |
yoy_growth = series.pct_change(periods=12).iloc[-1] * 100 | |
print(f" Year-over-year growth: {yoy_growth:.2f}%") | |
else: | |
print(f" Year-over-year growth: Insufficient data") | |
print() | |
# Test the specific calculations that are failing | |
print("3. Testing specific calculations:") | |
if 'GDPC1' in data.columns: | |
gdp_series = data['GDPC1'].dropna() | |
print(f" GDPC1 - Length: {len(gdp_series)}") | |
if len(gdp_series) >= 2: | |
gdp_growth = gdp_series.pct_change().iloc[-1] * 100 | |
print(f" GDPC1 - Growth: {gdp_growth:.2f}%") | |
print(f" GDPC1 - Is NaN: {pd.isna(gdp_growth)}") | |
else: | |
print(f" GDPC1 - Insufficient data for growth calculation") | |
if 'INDPRO' in data.columns: | |
indpro_series = data['INDPRO'].dropna() | |
print(f" INDPRO - Length: {len(indpro_series)}") | |
if len(indpro_series) >= 2: | |
indpro_growth = indpro_series.pct_change().iloc[-1] * 100 | |
print(f" INDPRO - Growth: {indpro_growth:.2f}%") | |
print(f" INDPRO - Is NaN: {pd.isna(indpro_growth)}") | |
else: | |
print(f" INDPRO - Insufficient data for growth calculation") | |
if 'CPIAUCSL' in data.columns: | |
cpi_series = data['CPIAUCSL'].dropna() | |
print(f" CPIAUCSL - Length: {len(cpi_series)}") | |
if len(cpi_series) >= 13: | |
cpi_growth = cpi_series.pct_change(periods=12).iloc[-1] * 100 | |
print(f" CPIAUCSL - YoY Growth: {cpi_growth:.2f}%") | |
print(f" CPIAUCSL - Is NaN: {pd.isna(cpi_growth)}") | |
else: | |
print(f" CPIAUCSL - Insufficient data for YoY calculation") | |
if 'FEDFUNDS' in data.columns: | |
fed_series = data['FEDFUNDS'].dropna() | |
print(f" FEDFUNDS - Length: {len(fed_series)}") | |
if len(fed_series) >= 1: | |
fed_rate = fed_series.iloc[-1] | |
print(f" FEDFUNDS - Latest rate: {fed_rate:.2f}%") | |
print(f" FEDFUNDS - Is NaN: {pd.isna(fed_rate)}") | |
else: | |
print(f" FEDFUNDS - No data available") | |
if 'UNRATE' in data.columns: | |
unrate_series = data['UNRATE'].dropna() | |
print(f" UNRATE - Length: {len(unrate_series)}") | |
if len(unrate_series) >= 1: | |
unrate = unrate_series.iloc[-1] | |
print(f" UNRATE - Latest rate: {unrate:.2f}%") | |
print(f" UNRATE - Is NaN: {pd.isna(unrate)}") | |
else: | |
print(f" UNRATE - No data available") | |
print() | |
print("=== DEBUG COMPLETE ===") | |
except Exception as e: | |
print(f"β Error during debugging: {e}") | |
import traceback | |
traceback.print_exc() | |
if __name__ == "__main__": | |
debug_data_structure() |