FREDML / src /analysis /economic_segmentation.py
Edwin Salguero
feat: Integrate advanced analytics and enterprise UI
26a8ea5
"""
Economic Segmentation Module
Advanced clustering analysis for economic time series and time periods
"""
import logging
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.metrics import silhouette_score, calinski_harabasz_score
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from scipy.spatial.distance import pdist, squareform
logger = logging.getLogger(__name__)
class EconomicSegmentation:
"""
Advanced economic segmentation using clustering techniques
for both time periods and economic series
"""
def __init__(self, data: pd.DataFrame):
"""
Initialize segmentation with economic data
Args:
data: DataFrame with economic indicators
"""
self.data = data.copy()
self.scaler = StandardScaler()
self.clusters = {}
self.cluster_analysis = {}
def prepare_time_period_data(self, indicators: List[str] = None,
window_size: int = 4) -> pd.DataFrame:
"""
Prepare time period data for clustering
Args:
indicators: List of indicators to use. If None, use all numeric columns
window_size: Rolling window size for feature extraction
Returns:
DataFrame with time period features
"""
if indicators is None:
indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Calculate growth rates for economic indicators
growth_data = self.data[indicators].pct_change().dropna()
# Extract features for each time period
features = []
feature_names = []
for indicator in indicators:
# Rolling statistics
features.extend([
growth_data[indicator].rolling(window_size).mean(),
growth_data[indicator].rolling(window_size).std(),
growth_data[indicator].rolling(window_size).min(),
growth_data[indicator].rolling(window_size).max(),
growth_data[indicator].rolling(window_size).skew(),
growth_data[indicator].rolling(window_size).kurt()
])
feature_names.extend([
f"{indicator}_mean", f"{indicator}_std", f"{indicator}_min",
f"{indicator}_max", f"{indicator}_skew", f"{indicator}_kurt"
])
# Create feature matrix
feature_df = pd.concat(features, axis=1)
feature_df.columns = feature_names
feature_df = feature_df.dropna()
return feature_df
def prepare_series_data(self, indicators: List[str] = None) -> pd.DataFrame:
"""
Prepare series data for clustering (clustering the indicators themselves)
Args:
indicators: List of indicators to use. If None, use all numeric columns
Returns:
DataFrame with series features
"""
if indicators is None:
indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Calculate growth rates
growth_data = self.data[indicators].pct_change().dropna()
# Extract features for each series
series_features = {}
for indicator in indicators:
series = growth_data[indicator].dropna()
# Statistical features
series_features[indicator] = {
'mean': series.mean(),
'std': series.std(),
'min': series.min(),
'max': series.max(),
'skew': series.skew(),
'kurt': series.kurtosis(),
'autocorr_1': series.autocorr(lag=1),
'autocorr_4': series.autocorr(lag=4),
'volatility': series.rolling(12).std().mean(),
'trend': np.polyfit(range(len(series)), series, 1)[0]
}
return pd.DataFrame(series_features).T
def find_optimal_clusters(self, data: pd.DataFrame, max_clusters: int = 10,
method: str = 'kmeans') -> Dict:
"""
Find optimal number of clusters using elbow method and silhouette analysis
Args:
data: Feature data for clustering
max_clusters: Maximum number of clusters to test
method: Clustering method ('kmeans' or 'hierarchical')
Returns:
Dictionary with optimal cluster analysis
"""
if len(data) < max_clusters:
max_clusters = len(data) - 1
inertias = []
silhouette_scores = []
calinski_scores = []
for k in range(2, max_clusters + 1):
try:
if method == 'kmeans':
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
labels = kmeans.fit_predict(data)
inertias.append(kmeans.inertia_)
else:
clustering = AgglomerativeClustering(n_clusters=k)
labels = clustering.fit_predict(data)
inertias.append(0) # Not applicable for hierarchical
# Calculate scores
if len(np.unique(labels)) > 1:
silhouette_scores.append(silhouette_score(data, labels))
calinski_scores.append(calinski_harabasz_score(data, labels))
else:
silhouette_scores.append(0)
calinski_scores.append(0)
except Exception as e:
logger.warning(f"Failed to cluster with k={k}: {e}")
inertias.append(0)
silhouette_scores.append(0)
calinski_scores.append(0)
# Find optimal k using silhouette score
optimal_k_silhouette = np.argmax(silhouette_scores) + 2
optimal_k_calinski = np.argmax(calinski_scores) + 2
# Elbow method (for k-means)
if method == 'kmeans' and len(inertias) > 1:
# Calculate second derivative to find elbow
second_derivative = np.diff(np.diff(inertias))
optimal_k_elbow = np.argmin(second_derivative) + 3
else:
optimal_k_elbow = optimal_k_silhouette
return {
'inertias': inertias,
'silhouette_scores': silhouette_scores,
'calinski_scores': calinski_scores,
'optimal_k_silhouette': optimal_k_silhouette,
'optimal_k_calinski': optimal_k_calinski,
'optimal_k_elbow': optimal_k_elbow,
'recommended_k': optimal_k_silhouette # Use silhouette as primary
}
def cluster_time_periods(self, indicators: List[str] = None,
n_clusters: int = None, method: str = 'kmeans',
window_size: int = 4) -> Dict:
"""
Cluster time periods based on economic activity patterns
Args:
indicators: List of indicators to use
n_clusters: Number of clusters. If None, auto-detect
method: Clustering method ('kmeans' or 'hierarchical')
window_size: Rolling window size for feature extraction
Returns:
Dictionary with clustering results
"""
# Prepare data
feature_df = self.prepare_time_period_data(indicators, window_size)
# Scale features
scaled_data = self.scaler.fit_transform(feature_df)
scaled_df = pd.DataFrame(scaled_data, index=feature_df.index, columns=feature_df.columns)
# Find optimal clusters if not specified
if n_clusters is None:
cluster_analysis = self.find_optimal_clusters(scaled_df, method=method)
n_clusters = cluster_analysis['recommended_k']
logger.info(f"Auto-detected optimal clusters: {n_clusters}")
# Perform clustering
if method == 'kmeans':
clustering = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
else:
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(scaled_df)
# Add cluster labels to original data
result_df = feature_df.copy()
result_df['cluster'] = cluster_labels
# Analyze clusters
cluster_analysis = self.analyze_clusters(result_df, 'cluster')
# Dimensionality reduction for visualization
pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(scaled_data)-1))
tsne_data = tsne.fit_transform(scaled_data)
return {
'data': result_df,
'cluster_labels': cluster_labels,
'cluster_analysis': cluster_analysis,
'pca_data': pca_data,
'tsne_data': tsne_data,
'feature_importance': dict(zip(feature_df.columns, np.abs(pca.components_[0]))),
'n_clusters': n_clusters,
'method': method
}
def cluster_economic_series(self, indicators: List[str] = None,
n_clusters: int = None, method: str = 'kmeans') -> Dict:
"""
Cluster economic series based on their characteristics
Args:
indicators: List of indicators to use
n_clusters: Number of clusters. If None, auto-detect
method: Clustering method ('kmeans' or 'hierarchical')
Returns:
Dictionary with clustering results
"""
# Prepare data
series_df = self.prepare_series_data(indicators)
# Scale features
scaled_data = self.scaler.fit_transform(series_df)
scaled_df = pd.DataFrame(scaled_data, index=series_df.index, columns=series_df.columns)
# Find optimal clusters if not specified
if n_clusters is None:
cluster_analysis = self.find_optimal_clusters(scaled_df, method=method)
n_clusters = cluster_analysis['recommended_k']
logger.info(f"Auto-detected optimal clusters: {n_clusters}")
# Perform clustering
if method == 'kmeans':
clustering = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
else:
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(scaled_df)
# Add cluster labels
result_df = series_df.copy()
result_df['cluster'] = cluster_labels
# Analyze clusters
cluster_analysis = self.analyze_clusters(result_df, 'cluster')
# Dimensionality reduction for visualization
pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(scaled_data)-1))
tsne_data = tsne.fit_transform(scaled_data)
return {
'data': result_df,
'cluster_labels': cluster_labels,
'cluster_analysis': cluster_analysis,
'pca_data': pca_data,
'tsne_data': tsne_data,
'feature_importance': dict(zip(series_df.columns, np.abs(pca.components_[0]))),
'n_clusters': n_clusters,
'method': method
}
def analyze_clusters(self, data: pd.DataFrame, cluster_col: str) -> Dict:
"""
Analyze cluster characteristics
Args:
data: DataFrame with cluster labels
cluster_col: Name of cluster column
Returns:
Dictionary with cluster analysis
"""
feature_cols = [col for col in data.columns if col != cluster_col]
cluster_analysis = {}
for cluster_id in data[cluster_col].unique():
cluster_data = data[data[cluster_col] == cluster_id]
cluster_analysis[cluster_id] = {
'size': len(cluster_data),
'percentage': len(cluster_data) / len(data) * 100,
'features': {}
}
# Analyze each feature
for feature in feature_cols:
feature_data = cluster_data[feature]
cluster_analysis[cluster_id]['features'][feature] = {
'mean': feature_data.mean(),
'std': feature_data.std(),
'min': feature_data.min(),
'max': feature_data.max(),
'median': feature_data.median()
}
return cluster_analysis
def perform_hierarchical_clustering(self, data: pd.DataFrame,
method: str = 'ward',
distance_threshold: float = None) -> Dict:
"""
Perform hierarchical clustering with dendrogram analysis
Args:
data: Feature data for clustering
method: Linkage method ('ward', 'complete', 'average', 'single')
distance_threshold: Distance threshold for cutting dendrogram
Returns:
Dictionary with hierarchical clustering results
"""
# Scale data
scaled_data = self.scaler.fit_transform(data)
# Calculate linkage matrix
if method == 'ward':
linkage_matrix = linkage(scaled_data, method=method)
else:
# For non-ward methods, we need to provide distance matrix
distance_matrix = pdist(scaled_data)
linkage_matrix = linkage(distance_matrix, method=method)
# Determine number of clusters
if distance_threshold is None:
# Use elbow method on distance
distances = linkage_matrix[:, 2]
second_derivative = np.diff(np.diff(distances))
optimal_threshold = distances[np.argmax(second_derivative) + 1]
else:
optimal_threshold = distance_threshold
# Get cluster labels
cluster_labels = fcluster(linkage_matrix, optimal_threshold, criterion='distance')
# Analyze clusters
result_df = data.copy()
result_df['cluster'] = cluster_labels
cluster_analysis = self.analyze_clusters(result_df, 'cluster')
return {
'linkage_matrix': linkage_matrix,
'cluster_labels': cluster_labels,
'distance_threshold': optimal_threshold,
'cluster_analysis': cluster_analysis,
'data': result_df,
'method': method
}
def generate_segmentation_report(self, time_period_clusters: Dict = None,
series_clusters: Dict = None) -> str:
"""
Generate comprehensive segmentation report
Args:
time_period_clusters: Results from time period clustering
series_clusters: Results from series clustering
Returns:
Formatted report string
"""
report = "ECONOMIC SEGMENTATION REPORT\n"
report += "=" * 50 + "\n\n"
if time_period_clusters:
report += "TIME PERIOD CLUSTERING\n"
report += "-" * 30 + "\n"
report += f"Method: {time_period_clusters['method']}\n"
report += f"Number of Clusters: {time_period_clusters['n_clusters']}\n"
report += f"Total Periods: {len(time_period_clusters['data'])}\n\n"
# Cluster summary
cluster_analysis = time_period_clusters['cluster_analysis']
for cluster_id, analysis in cluster_analysis.items():
report += f"Cluster {cluster_id}:\n"
report += f" Size: {analysis['size']} periods ({analysis['percentage']:.1f}%)\n"
# Top features for this cluster
if 'feature_importance' in time_period_clusters:
features = time_period_clusters['feature_importance']
top_features = sorted(features.items(), key=lambda x: x[1], reverse=True)[:5]
report += f" Top Features: {', '.join([f[0] for f in top_features])}\n"
report += "\n"
if series_clusters:
report += "ECONOMIC SERIES CLUSTERING\n"
report += "-" * 30 + "\n"
report += f"Method: {series_clusters['method']}\n"
report += f"Number of Clusters: {series_clusters['n_clusters']}\n"
report += f"Total Series: {len(series_clusters['data'])}\n\n"
# Cluster summary
cluster_analysis = series_clusters['cluster_analysis']
for cluster_id, analysis in cluster_analysis.items():
report += f"Cluster {cluster_id}:\n"
report += f" Size: {analysis['size']} series ({analysis['percentage']:.1f}%)\n"
# Series in this cluster
cluster_series = series_clusters['data'][series_clusters['data']['cluster'] == cluster_id]
series_names = cluster_series.index.tolist()
report += f" Series: {', '.join(series_names)}\n"
# Top features for this cluster
if 'feature_importance' in series_clusters:
features = series_clusters['feature_importance']
top_features = sorted(features.items(), key=lambda x: x[1], reverse=True)[:5]
report += f" Top Features: {', '.join([f[0] for f in top_features])}\n"
report += "\n"
return report