|  | --- | 
					
						
						|  | title: PyTorch Python 3.10 Wheel Collection | 
					
						
						|  | library_name: pytorch | 
					
						
						|  | license: mit | 
					
						
						|  | tags: | 
					
						
						|  | - pytorch | 
					
						
						|  | - wheels | 
					
						
						|  | - python3.10 | 
					
						
						|  | - cuda | 
					
						
						|  | - transformers | 
					
						
						|  | - machine-learning | 
					
						
						|  | - deep-learning | 
					
						
						|  | - dependency-management | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | pipeline_tag: other | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # PyTorch Python 3.10 Wheel Collection | 
					
						
						|  |  | 
					
						
						|  | Complete PyTorch ML stack with all dependencies - no conflicts, easy installation. | 
					
						
						|  |  | 
					
						
						|  | ## π What's Included | 
					
						
						|  |  | 
					
						
						|  | - **Python:** 3.10 compatible | 
					
						
						|  | - **PyTorch:** 2.7.1 + CUDA 12.6 | 
					
						
						|  | - **Transformers:** 4.52.3 | 
					
						
						|  | - **NumPy:** 1.26.4 (compatible version) | 
					
						
						|  | - **SciPy:** 1.15.2 | 
					
						
						|  | - **All Dependencies:** 80+ wheels, fully tested together | 
					
						
						|  |  | 
					
						
						|  | ## π Installation (Super Easy!) | 
					
						
						|  |  | 
					
						
						|  | **One command installation from HuggingFace:** | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | # Download and install everything | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  | import subprocess | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | # Download all wheels | 
					
						
						|  | repo_path = snapshot_download(repo_id="RDHub/pytorch_python_310") | 
					
						
						|  | wheel_path = os.path.join(repo_path, "lib_wheel") | 
					
						
						|  |  | 
					
						
						|  | # Install all wheels | 
					
						
						|  | subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **Or manually:** | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | # 1. Download repository | 
					
						
						|  | git clone https://huggingface.co/RDHub/pytorch_python_310 | 
					
						
						|  |  | 
					
						
						|  | # 2. Install everything | 
					
						
						|  | cd pytorch_python_310 | 
					
						
						|  | pip install lib_wheel/*.whl | 
					
						
						|  |  | 
					
						
						|  | # 3. Test (optional) | 
					
						
						|  | python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')" | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## β
 Key Versions | 
					
						
						|  |  | 
					
						
						|  | | Package | Version | Python | | 
					
						
						|  | |---------|---------|---------| | 
					
						
						|  | | PyTorch | 2.7.1 | 3.10 | | 
					
						
						|  | | Transformers | 4.52.3 | 3.10 | | 
					
						
						|  | | NumPy | 1.26.4 | 3.10 | | 
					
						
						|  | | CUDA | 12.6 | - | | 
					
						
						|  |  | 
					
						
						|  | ## π― Use Cases | 
					
						
						|  |  | 
					
						
						|  | Perfect for: | 
					
						
						|  | - Machine Learning projects | 
					
						
						|  | - Large Language Model training | 
					
						
						|  | - Computer Vision | 
					
						
						|  | - Audio processing | 
					
						
						|  | - Research environments | 
					
						
						|  |  | 
					
						
						|  | ## π Notes | 
					
						
						|  |  | 
					
						
						|  | - **No dependency conflicts** - all versions tested together | 
					
						
						|  | - **Offline ready** - no internet needed after download | 
					
						
						|  | - **CUDA included** - ready for GPU training | 
					
						
						|  | - **Linux x86_64** compatible | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | **Repository Size:** ~2GB | 
					
						
						|  | **Total Packages:** 80+ wheels | 
					
						
						|  | **Tested:** Ubuntu 22.04, Python 3.10 |