whisper-fine_tuning / README.md
RecCode's picture
Upload processor
9f3ae8f verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: whisper-fine_tuning
    results: []

whisper-fine_tuning

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4096
  • Wer: 89.7704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.127 0.04 10 6.5305 89.7704
4.9407 0.08 20 5.6702 88.1002
3.9127 0.12 30 5.2648 85.1775
3.4678 0.16 40 5.0057 84.7599
3.7416 0.2 50 4.8397 85.3862
3.1575 0.24 60 4.6961 86.4301
3.3175 0.28 70 4.5819 87.2651
2.9554 0.32 80 4.4950 88.1002
3.0291 0.36 90 4.4375 89.7704
3.0219 0.4 100 4.4096 89.7704

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1