Transformers
Safetensors
English
finance
File size: 4,959 Bytes
1999b13
 
2da2967
 
 
 
 
 
 
 
 
1999b13
 
 
 
2da2967
1999b13
 
 
 
 
 
 
2da2967
1999b13
 
cc103b0
2da2967
 
cc103b0
2da2967
1999b13
5a501e2
1999b13
2da2967
1999b13
 
 
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
 
 
 
2da2967
1999b13
2da2967
1999b13
 
 
2da2967
 
 
 
 
1999b13
 
 
 
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
04b6268
2da2967
 
 
1999b13
2da2967
 
 
1999b13
2da2967
 
 
1999b13
2da2967
 
 
 
 
1999b13
2da2967
 
1999b13
 
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
 
 
2da2967
 
 
1999b13
1ab91fe
1999b13
2da2967
1999b13
2da2967
1999b13
 
 
 
 
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
 
 
 
1999b13
 
 
2da2967
 
 
1999b13
 
 
2da2967
1999b13
2da2967
1999b13
1ab91fe
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
 
 
1999b13
2da2967
1999b13
2da2967
 
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2da2967
1999b13
2f2f4b8
04b6268
23bed5d
1999b13
2da2967
 
1999b13
2da2967
 
1999b13
 
2da2967
1999b13
2da2967
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
library_name: transformers
tags:
- finance
license: mit
datasets:
- Recompense/amazon-appliances-lite-data
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---

# Model Card for Model ID

Predicts Prices based on product description.



## Model Details

### Model Description

This model predicts prices of amazon aplliances data based on a product description


- **Developed by:** https://huggingface.co/Recompense
- **Model type:**  Transformer (causal, autoregressive)
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct

### Model Sources

- **Repository:** [https://huggingface.co/Recompense/Midas-pricer/]

## Uses

- Primary use case: Generating estimated retail prices for household appliances from textual descriptions.

- Example applications:

  Assisting e-commerce teams in setting competitive price points

  Supporting market analysis dashboards with on-the-fly price estimates

- Not intended for: Financial advice or investment decisions


### Out-of-Scope Use

- Attempting to predict prices outside the appliances domain (e.g., electronics, furniture, vehicles) will likely yield unreliable results.

- Using this model for any price-sensitive or regulatory decisions without human oversight is discouraged.

## Bias, Risks, and Limitations

- Data biases: The training dataset is drawn exclusively from Amazon appliance listings. Price distributions are skewed toward mid-range consumer electronics; extreme low or high‐end appliances are underrepresented.

- Input sensitivity: Minor changes in phrasing or additional noisy tokens can shift predictions noticeably.

- Generalization: The model does not understand supply chain disruptions, seasonality, or promotions—it only captures patterns seen in historical listing data.


### Recommendations

- Always validate model outputs against a small set of ground-truth prices before production deployment.

- Use this model as an assistant, not an oracle: incorporate downstream business rules or domain expertise.

- Regularly retrain or fine-tune on updated listing data to capture shifting market trends.

## How to Get Started with the Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Recompense/Midas-pricer")
model = AutoModelForCausalLM.from_pretrained("Recompense/Midas-pricer", torch_dtype=torch.bfloat16)

# Prepare prompt
product_desc = "How much does this cost to the nearest dollar?\n\nSamsung 7kg top-load washing machine with digital inverter motor"
prompt = f"{product_desc}\n\nPrice is $"

# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt")
attention_mask = torch.ones(inputs.shape, device="cuda")
generated = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=3, num_return_sequences=1)
price_text = tokenizer.decode(generated[0], skip_special_tokens=True)

print(f"Estimated price: ${price_text}")
```


## Training Details

### Training Data

- Dataset: Recompense/amazon-appliances-lite-data

- Train/validation/test split: 80/10/10

### Training Procedure

#### Training Hyperparameters

- Fine-tuning framework: PyTorch + Hugging Face Accelerate

- Precision: bf16 mixed precision

- Batch size: 1 sequence

- Learning rate: 1e-5 with linear warmup (10% of total steps)

- Optimizer: AdamW

## Evaluation


### Testing Data, Factors & Metrics
- Test set: Held-out 10% of listings (≈5 000 examples)

- Metric: Root Mean Squared Logarithmic Error (RMSLE)

- Hit@$40: Percentage of predictions within ±$40 of true price

| Metric   | Value  |
| -------- | ------ |
| RMSLE    | 0.61   |
| Hit@\$40 | 85.2 % |


#### Summary
The model achieves an RMSLE of 0.61, indicating good alignment between predicted and actual prices on a log scale,
and correctly estimates within $40 in over 85% of test cases.
This performance is competitive for rapid prototyping in price-sensitive applications.

## Environmental Impact

- Approximate compute emissions for fine-tuning (using ML CO₂ impact calculator):

- Hardware: Tesla T4

- Duration: 2 hours(0.06 epoch)

- Cloud provider: Google Cloud, region US-Central

- Estimated CO₂ emitted: 6 kg CO₂e

## Technical Specifications
## Model Architecture
- Base model: Llama-3.1-8B (8 billion parameters)

- Objective: Autoregressive language modeling with instruction tuning

## Compute Infrastructure
- Hardware: 4× Tesla T4 GPUs

- Software:

  PyTorch 2.x

  transformers 5.x

  accelerate 1.x

  bitsandbytes (for 8-bit quantization optional inference)



## Glossary

- RMSLE (Root Mean Squared Logarithmic Error):
Measures the square root of the average squared difference between log-transformed predictions and targets. Less sensitive to large absolute errors.

- Hit@$40:
  Fraction of predictions whose absolute error is ≤ $40.


## Model Card Authors

Damola Jimoh(Recompense)