File size: 4,959 Bytes
1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 cc103b0 2da2967 cc103b0 2da2967 1999b13 5a501e2 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 04b6268 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 1ab91fe 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 1ab91fe 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2f2f4b8 04b6268 23bed5d 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 1999b13 2da2967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
library_name: transformers
tags:
- finance
license: mit
datasets:
- Recompense/amazon-appliances-lite-data
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# Model Card for Model ID
Predicts Prices based on product description.
## Model Details
### Model Description
This model predicts prices of amazon aplliances data based on a product description
- **Developed by:** https://huggingface.co/Recompense
- **Model type:** Transformer (causal, autoregressive)
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct
### Model Sources
- **Repository:** [https://huggingface.co/Recompense/Midas-pricer/]
## Uses
- Primary use case: Generating estimated retail prices for household appliances from textual descriptions.
- Example applications:
Assisting e-commerce teams in setting competitive price points
Supporting market analysis dashboards with on-the-fly price estimates
- Not intended for: Financial advice or investment decisions
### Out-of-Scope Use
- Attempting to predict prices outside the appliances domain (e.g., electronics, furniture, vehicles) will likely yield unreliable results.
- Using this model for any price-sensitive or regulatory decisions without human oversight is discouraged.
## Bias, Risks, and Limitations
- Data biases: The training dataset is drawn exclusively from Amazon appliance listings. Price distributions are skewed toward mid-range consumer electronics; extreme low or high‐end appliances are underrepresented.
- Input sensitivity: Minor changes in phrasing or additional noisy tokens can shift predictions noticeably.
- Generalization: The model does not understand supply chain disruptions, seasonality, or promotions—it only captures patterns seen in historical listing data.
### Recommendations
- Always validate model outputs against a small set of ground-truth prices before production deployment.
- Use this model as an assistant, not an oracle: incorporate downstream business rules or domain expertise.
- Regularly retrain or fine-tune on updated listing data to capture shifting market trends.
## How to Get Started with the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Recompense/Midas-pricer")
model = AutoModelForCausalLM.from_pretrained("Recompense/Midas-pricer", torch_dtype=torch.bfloat16)
# Prepare prompt
product_desc = "How much does this cost to the nearest dollar?\n\nSamsung 7kg top-load washing machine with digital inverter motor"
prompt = f"{product_desc}\n\nPrice is $"
# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt")
attention_mask = torch.ones(inputs.shape, device="cuda")
generated = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=3, num_return_sequences=1)
price_text = tokenizer.decode(generated[0], skip_special_tokens=True)
print(f"Estimated price: ${price_text}")
```
## Training Details
### Training Data
- Dataset: Recompense/amazon-appliances-lite-data
- Train/validation/test split: 80/10/10
### Training Procedure
#### Training Hyperparameters
- Fine-tuning framework: PyTorch + Hugging Face Accelerate
- Precision: bf16 mixed precision
- Batch size: 1 sequence
- Learning rate: 1e-5 with linear warmup (10% of total steps)
- Optimizer: AdamW
## Evaluation
### Testing Data, Factors & Metrics
- Test set: Held-out 10% of listings (≈5 000 examples)
- Metric: Root Mean Squared Logarithmic Error (RMSLE)
- Hit@$40: Percentage of predictions within ±$40 of true price
| Metric | Value |
| -------- | ------ |
| RMSLE | 0.61 |
| Hit@\$40 | 85.2 % |
#### Summary
The model achieves an RMSLE of 0.61, indicating good alignment between predicted and actual prices on a log scale,
and correctly estimates within $40 in over 85% of test cases.
This performance is competitive for rapid prototyping in price-sensitive applications.
## Environmental Impact
- Approximate compute emissions for fine-tuning (using ML CO₂ impact calculator):
- Hardware: Tesla T4
- Duration: 2 hours(0.06 epoch)
- Cloud provider: Google Cloud, region US-Central
- Estimated CO₂ emitted: 6 kg CO₂e
## Technical Specifications
## Model Architecture
- Base model: Llama-3.1-8B (8 billion parameters)
- Objective: Autoregressive language modeling with instruction tuning
## Compute Infrastructure
- Hardware: 4× Tesla T4 GPUs
- Software:
PyTorch 2.x
transformers 5.x
accelerate 1.x
bitsandbytes (for 8-bit quantization optional inference)
## Glossary
- RMSLE (Root Mean Squared Logarithmic Error):
Measures the square root of the average squared difference between log-transformed predictions and targets. Less sensitive to large absolute errors.
- Hit@$40:
Fraction of predictions whose absolute error is ≤ $40.
## Model Card Authors
Damola Jimoh(Recompense) |