ruadapt_qwen2.5_3B_darulm_bpe_64000_full_lr2e4_bs256

This model is a fine-tuned version of RefalMachine/ruadapt_qwen2.5_3B_darulm_bpe_64000_mean_init on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5958
  • Accuracy: 0.4892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • total_train_batch_size: 256
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8396 0.09 1000 2.6993 0.4783
2.7801 0.18 2000 2.6373 0.4849
2.7488 0.26 3000 2.6154 0.4868
2.7519 0.35 4000 2.6053 0.4880
2.7159 0.44 5000 2.6004 0.4888
2.7303 0.53 6000 2.5980 0.4888
2.7572 0.61 7000 2.5966 0.4891
2.7377 0.7 8000 2.5961 0.4892
2.7412 0.79 9000 2.5959 0.4893
2.7246 0.88 10000 2.5958 0.4892
2.7197 0.97 11000 2.5958 0.4892

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
2.91B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RefalMachine/ruadapt_qwen2.5_3B_darulm_bpe_64000_full_lr2e4_bs256