solar_10.7_darulm_unigram_proj_init_darulm_part2_r128_a512_v3_1.0_512_28_02_24
This model is a fine-tuned version of outputs/solar_10.7_darulm_unigram_proj_init_8node_darulm_part1_v3_1.0_512_12_02_24 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2309
- Accuracy: 0.5309
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 24
- gradient_accumulation_steps: 5
- total_train_batch_size: 120
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.0 | 1 | 2.3534 | 0.5148 |
2.4427 | 0.01 | 500 | 2.3338 | 0.5155 |
2.4399 | 0.02 | 1000 | 2.3276 | 0.5164 |
2.4244 | 0.03 | 1500 | 2.3231 | 0.5169 |
2.4336 | 0.04 | 2000 | 2.3194 | 0.5177 |
2.4201 | 0.06 | 2500 | 2.3156 | 0.5180 |
2.4245 | 0.07 | 3000 | 2.3128 | 0.5185 |
2.4157 | 0.08 | 3500 | 2.3097 | 0.5187 |
2.4054 | 0.09 | 4000 | 2.3070 | 0.5194 |
2.4161 | 0.1 | 4500 | 2.3033 | 0.5197 |
2.395 | 0.11 | 5000 | 2.3020 | 0.5201 |
2.4037 | 0.12 | 5500 | 2.3001 | 0.5204 |
2.4188 | 0.13 | 6000 | 2.2977 | 0.5206 |
2.406 | 0.15 | 6500 | 2.2961 | 0.5208 |
2.4022 | 0.16 | 7000 | 2.2943 | 0.5210 |
2.3952 | 0.17 | 7500 | 2.2926 | 0.5217 |
2.394 | 0.18 | 8000 | 2.2909 | 0.5217 |
2.3828 | 0.19 | 8500 | 2.2891 | 0.5218 |
2.3903 | 0.2 | 9000 | 2.2882 | 0.5223 |
2.3943 | 0.21 | 9500 | 2.2861 | 0.5224 |
2.3944 | 0.22 | 10000 | 2.2851 | 0.5224 |
2.3872 | 0.23 | 10500 | 2.2841 | 0.5227 |
2.381 | 0.25 | 11000 | 2.2820 | 0.5228 |
2.3832 | 0.26 | 11500 | 2.2798 | 0.5232 |
2.3813 | 0.27 | 12000 | 2.2793 | 0.5237 |
2.3715 | 0.28 | 12500 | 2.2779 | 0.5241 |
2.3898 | 0.29 | 13000 | 2.2764 | 0.5240 |
2.3717 | 0.3 | 13500 | 2.2757 | 0.5240 |
2.3745 | 0.31 | 14000 | 2.2742 | 0.5244 |
2.3657 | 0.32 | 14500 | 2.2732 | 0.5244 |
2.3782 | 0.34 | 15000 | 2.2715 | 0.5247 |
2.3761 | 0.35 | 15500 | 2.2706 | 0.5247 |
2.3827 | 0.36 | 16000 | 2.2692 | 0.5249 |
2.3659 | 0.37 | 16500 | 2.2678 | 0.5251 |
2.3551 | 0.38 | 17000 | 2.2674 | 0.5252 |
2.3605 | 0.39 | 17500 | 2.2662 | 0.5255 |
2.3579 | 0.4 | 18000 | 2.2654 | 0.5256 |
2.361 | 0.41 | 18500 | 2.2642 | 0.5257 |
2.3632 | 0.42 | 19000 | 2.2652 | 0.5254 |
2.3409 | 0.44 | 19500 | 2.2625 | 0.5261 |
2.3546 | 0.45 | 20000 | 2.2631 | 0.5259 |
2.361 | 0.46 | 20500 | 2.2611 | 0.5264 |
2.355 | 0.47 | 21000 | 2.2598 | 0.5264 |
2.3599 | 0.48 | 21500 | 2.2588 | 0.5265 |
2.3554 | 0.49 | 22000 | 2.2583 | 0.5265 |
2.3552 | 0.5 | 22500 | 2.2571 | 0.5268 |
2.3574 | 0.51 | 23000 | 2.2565 | 0.5268 |
2.3527 | 0.53 | 23500 | 2.2557 | 0.5272 |
2.3574 | 0.54 | 24000 | 2.2548 | 0.5272 |
2.3395 | 0.55 | 24500 | 2.2534 | 0.5274 |
2.3517 | 0.56 | 25000 | 2.2531 | 0.5272 |
2.346 | 0.57 | 25500 | 2.2521 | 0.5275 |
2.3469 | 0.58 | 26000 | 2.2515 | 0.5275 |
2.3451 | 0.59 | 26500 | 2.2509 | 0.5278 |
2.3373 | 0.6 | 27000 | 2.2501 | 0.5277 |
2.3512 | 0.61 | 27500 | 2.2493 | 0.5281 |
2.3351 | 0.63 | 28000 | 2.2485 | 0.5282 |
2.3431 | 0.64 | 28500 | 2.2476 | 0.5282 |
2.3399 | 0.65 | 29000 | 2.2463 | 0.5283 |
2.3376 | 0.66 | 29500 | 2.2463 | 0.5284 |
2.3574 | 0.67 | 30000 | 2.2456 | 0.5285 |
2.3312 | 0.68 | 30500 | 2.2447 | 0.5289 |
2.3442 | 0.69 | 31000 | 2.2442 | 0.5288 |
2.338 | 0.7 | 31500 | 2.2434 | 0.5289 |
2.3345 | 0.72 | 32000 | 2.2433 | 0.5291 |
2.3314 | 0.73 | 32500 | 2.2420 | 0.5292 |
2.326 | 0.74 | 33000 | 2.2414 | 0.5293 |
2.3247 | 0.75 | 33500 | 2.2409 | 0.5295 |
2.3363 | 0.76 | 34000 | 2.2403 | 0.5296 |
2.3409 | 0.77 | 34500 | 2.2395 | 0.5297 |
2.335 | 0.78 | 35000 | 2.2391 | 0.5295 |
2.3194 | 0.79 | 35500 | 2.2383 | 0.5298 |
2.3367 | 0.8 | 36000 | 2.2379 | 0.5301 |
2.3286 | 0.82 | 36500 | 2.2372 | 0.5301 |
2.3225 | 0.83 | 37000 | 2.2366 | 0.5302 |
2.3198 | 0.84 | 37500 | 2.2363 | 0.5301 |
2.3274 | 0.85 | 38000 | 2.2355 | 0.5301 |
2.3195 | 0.86 | 38500 | 2.2349 | 0.5303 |
2.3418 | 0.87 | 39000 | 2.2344 | 0.5303 |
2.323 | 0.88 | 39500 | 2.2340 | 0.5304 |
2.3211 | 0.89 | 40000 | 2.2336 | 0.5304 |
2.3332 | 0.91 | 40500 | 2.2334 | 0.5306 |
2.3226 | 0.92 | 41000 | 2.2329 | 0.5307 |
2.3329 | 0.93 | 41500 | 2.2325 | 0.5308 |
2.3172 | 0.94 | 42000 | 2.2321 | 0.5307 |
2.3231 | 0.95 | 42500 | 2.2319 | 0.5308 |
2.314 | 0.96 | 43000 | 2.2316 | 0.5309 |
2.3205 | 0.97 | 43500 | 2.2315 | 0.5308 |
2.3208 | 0.98 | 44000 | 2.2312 | 0.5309 |
2.3228 | 0.99 | 44500 | 2.2310 | 0.5309 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.2
Training procedure
Framework versions
- PEFT 0.6.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support