|
--- |
|
license: apache-2.0 |
|
license_link: >- |
|
https://github.com/STMicroelectronics/stm32ai-modelzoo/raw/refs/heads/main/pose_estimation/LICENSE.md |
|
pipeline_tag: keypoint-detection |
|
--- |
|
# Hand landmarks quantized |
|
|
|
## **Use case** : `Pose estimation` |
|
|
|
# Model description |
|
|
|
|
|
Hand landmarks is a single pose estimation model targeted for real-time processing implemented in Tensorflow. |
|
|
|
The model is quantized in int8 format using tensorflow lite converter. |
|
|
|
## Network information |
|
|
|
|
|
| Network information | Value | |
|
|-------------------------|-----------------| |
|
| Framework | TensorFlow Lite | |
|
| Quantization | int8 | |
|
| Provenance | https://github.com/PINTO0309/PINTO_model_zoo/tree/main/033_Hand_Detection_and_Tracking |
|
| Paper | https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Hand%20Tracking%20(Lite_Full)%20with%20Fairness%20Oct%202021.pdf | |
|
|
|
|
|
## Networks inputs / outputs |
|
|
|
With an image resolution of NxM with K keypoints to detect : |
|
|
|
| Input Shape | Description | |
|
| ----- | ----------- | |
|
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | |
|
|
|
| Output Shape | Description | |
|
| ----- | ----------- | |
|
| (1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints | |
|
|
|
## Recommended Platforms |
|
|
|
| Platform | Supported | Recommended | |
|
|----------|-----------|-------------| |
|
| STM32L0 | [] | [] | |
|
| STM32L4 | [] | [] | |
|
| STM32U5 | [] | [] | |
|
| STM32H7 | [] | [] | |
|
| STM32MP1 | [x] | [] | |
|
| STM32MP2 | [x] | [x] | |
|
| STM32N6 | [x] | [x] | |
|
|
|
# Performances |
|
|
|
## Metrics |
|
|
|
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. |
|
|
|
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset) |
|
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version | |
|
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1739.5 | 0.0 | 3283.38 | 10.2.0 | 2.2.0 | |
|
|
|
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset) |
|
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |
|
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | custom_dataset_hands_21kpts | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 20.75 | 48.19 | 10.2.0 | 2.2.0 | |