SahilCarterr's picture
Update README.md
0d77f8d verified
---
frameworks:
- Pytorch
tasks:
- text-to-image-synthesis
#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt
#domain:
##如 nlp、cv、audio、multi-modal
#- nlp
#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn
#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr
#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained
#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
base_model:
- Qwen/Qwen-Image
base_model_relation: adapter
---
# Qwen-Image Image Structure Control Model - Depth ControlNet
![](./assets/cover.png)
## Model Introduction
This model is a structure control model for images, trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) .The model architecture is ControlNet, which can control the generated image structure according to the depth (Depth) map .The training framework is built on[DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) and the dataset used is [BLIP3o](https://modelscope.cn/datasets/BLIP3o/BLIP3o-60k)。
## Effect Demonstration
|Structure Map|Generated Image 1|Generated Image 2|
|-|-|-|
|![](./assets/depth2.jpg)|![](./assets/image2_0.jpg)|![](./assets/image2_1.jpg)|
|![](./assets/depth3.jpg)|![](./assets/image3_0.jpg)|![](./assets/image3_1.jpg)|
|![](./assets/depth1.jpg)|![](./assets/image1_0.jpg)|![](./assets/image1_1.jpg)|
## Inference Code
```
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
```
```python
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
from PIL import Image
import torch
from modelscope import dataset_snapshot_download
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth", origin_file_pattern="model.safetensors"),
],
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/example_image_dataset",
local_dir="./data/example_image_dataset",
allow_file_pattern="depth/image_1.jpg"
)
controlnet_image = Image.open("data/example_image_dataset/depth/image_1.jpg").resize((1328, 1328))
prompt = "Exquisite portrait of an underwater girl with flowing blue dress and fluttering hair. Transparent light and shadow, surrounded by bubbles. Her face is serene, with exquisite details and dreamy beauty."
image = pipe(
prompt, seed=0,
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)]
)
image.save("image.jpg")
```
---
license: apache-2.0
---