Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Weight initialization
During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher performance. [MMCV](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py) provide some commonly used methods for initializing modules like `nn.Conv2d`. Model initialization in MMdetection mainly uses `init_cfg`. Users can initialize models with following two steps:
1. Define `init_cfg` for a model or its components in `model_cfg`, but `init_cfg` of children components have higher priority and will override `init_cfg` of parents modules.
2. Build model as usual, but call `model.init_weights()` method explicitly, and model parameters will be initialized as configuration.
The high-level workflow of initialization in MMdetection is :
model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children's init_weight()
### Description
It is dict or list\[dict\], and contains the following keys and values:
- `type` (str), containing the initializer name in `INTIALIZERS`, and followed by arguments of the initializer.
- `layer` (str or list\[str\]), containing the names of basic layers in Pytorch or MMCV with learnable parameters that will be initialized, e.g. `'Conv2d'`,`'DeformConv2d'`.
- `override` (dict or list\[dict\]), containing the sub-modules that not inherit from BaseModule and whose initialization configuration is different from other layers' which are in `'layer'` key. Initializer defined in `type` will work for all layers defined in `layer`, so if sub-modules are not derived Classes of `BaseModule` but can be initialized as same ways of layers in `layer`, it does not need to use `override`. `override` contains:
- `type` followed by arguments of initializer;
- `name` to indicate sub-module which will be initialized.
### Initialize parameters
Inherit a new model from `mmcv.runner.BaseModule` or `mmdet.models` Here we show an example of FooModel.
```python
import torch.nn as nn
from mmcv.runner import BaseModule
class FooModel(BaseModule)
def __init__(self,
arg1,
arg2,
init_cfg=None):
super(FooModel, self).__init__(init_cfg)
...
```
- Initialize model by using `init_cfg` directly in code
```python
import torch.nn as nn
from mmcv.runner import BaseModule
# or directly inherit mmdet models
class FooModel(BaseModule)
def __init__(self,
arg1,
arg2,
init_cfg=XXX):
super(FooModel, self).__init__(init_cfg)
...
```
- Initialize model by using `init_cfg` directly in `mmcv.Sequential` or `mmcv.ModuleList` code
```python
from mmcv.runner import BaseModule, ModuleList
class FooModel(BaseModule)
def __init__(self,
arg1,
arg2,
init_cfg=None):
super(FooModel, self).__init__(init_cfg)
...
self.conv1 = ModuleList(init_cfg=XXX)
```
- Initialize model by using `init_cfg` in config file
```python
model = dict(
...
model = dict(
type='FooModel',
arg1=XXX,
arg2=XXX,
init_cfg=XXX),
...
```
### Usage of init_cfg
1. Initialize model by `layer` key
If we only define `layer`, it just initialize the layer in `layer` key.
NOTE: Value of `layer` key is the class name with attributes weights and bias of Pytorch, (so such as `MultiheadAttention layer` is not supported).
- Define `layer` key for initializing module with same configuration.
```python
init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
# initialize whole module with same configuration
```
- Define `layer` key for initializing layer with different configurations.
```python
init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
dict(type='Constant', layer='Conv2d', val=2),
dict(type='Constant', layer='Linear', val=3)]
# nn.Conv1d will be initialized with dict(type='Constant', val=1)
# nn.Conv2d will be initialized with dict(type='Constant', val=2)
# nn.Linear will be initialized with dict(type='Constant', val=3)
```
2. Initialize model by `override` key
- When initializing some specific part with its attribute name, we can use `override` key, and the value in `override` will ignore the value in init_cfg.
```python
# layers:
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)
init_cfg = dict(type='Constant',
layer=['Conv1d','Conv2d'], val=1, bias=2,
override=dict(type='Constant', name='reg', val=3, bias=4))
# self.feat and self.cls will be initialized with dict(type='Constant', val=1, bias=2)
# The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)
```
- If `layer` is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted.
```python
# layers:
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)
init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg'))
# self.feat and self.cls will be initialized by Pytorch
# The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)
```
- If we don't define `layer` key or `override` key, it will not initialize anything.
- Invalid usage
```python
# It is invalid that override don't have name key
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
override=dict(type='Constant', val=3, bias=4))
# It is also invalid that override has name and other args except type
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
override=dict(name='reg', val=3, bias=4))
```
3. Initialize model with the pretrained model
```python
init_cfg = dict(type='Pretrained',
checkpoint='torchvision://resnet50')
```
More details can refer to the documentation in [MMEngine](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html)