Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# 使用已有模型在标准数据集上进行推理
MMDetection 提供了许多预训练好的检测模型,可以在 [Model Zoo](https://mmdetection.readthedocs.io/zh_CN/latest/model_zoo.html) 查看具体有哪些模型。
推理具体指使用训练好的模型来检测图像上的目标,本文将会展示具体步骤。
在 MMDetection 中,一个模型被定义为一个[配置文件](https://mmdetection.readthedocs.io/zh_CN/latest/user_guides/config.html) 和对应被存储在 checkpoint 文件内的模型参数的集合。
首先,我们建议从 [RTMDet](https://github.com/open-mmlab/mmdetection/tree/main/configs/rtmdet) 开始,其 [配置](https://github.com/open-mmlab/mmdetection/blob/main/configs/rtmdet/rtmdet_l_8xb32-300e_coco.py) 文件和 [checkpoint](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth) 文件在此。
我们建议将 checkpoint 文件下载到 `checkpoints` 文件夹内。
## 推理的高层编程接口
MMDetection 为在图片上推理提供了 Python 的高层编程接口。下面是建立模型和在图像或视频上进行推理的例子。
```python
import cv2
import mmcv
from mmcv.transforms import Compose
from mmengine.utils import track_iter_progress
from mmdet.registry import VISUALIZERS
from mmdet.apis import init_detector, inference_detector
# 指定模型的配置文件和 checkpoint 文件路径
config_file = 'configs/rtmdet/rtmdet_l_8xb32-300e_coco.py'
checkpoint_file = 'checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth'
# 根据配置文件和 checkpoint 文件构建模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# 初始化可视化工具
visualizer = VISUALIZERS.build(model.cfg.visualizer)
# 从 checkpoint 中加载 Dataset_meta,并将其传递给模型的 init_detector
visualizer.dataset_meta = model.dataset_meta
# 测试单张图片并展示结果
img = 'test.jpg' # 或者 img = mmcv.imread(img),这样图片仅会被读一次
result = inference_detector(model, img)
# 显示结果
img = mmcv.imread(img)
img = mmcv.imconvert(img, 'bgr', 'rgb')
visualizer.add_datasample(
'result',
img,
data_sample=result,
draw_gt=False,
show=True)
# 测试视频并展示结果
# 构建测试 pipeline
model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray'
test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline)
# 可视化工具在第33行和35行已经初完成了初始化,如果直接在一个 jupyter nodebook 中运行这个 demo,
# 这里则不需要再创建一个可视化工具了。
# 初始化可视化工具
visualizer = VISUALIZERS.build(model.cfg.visualizer)
# 从 checkpoint 中加载 Dataset_meta,并将其传递给模型的 init_detector
visualizer.dataset_meta = model.dataset_meta
# 显示间隔 (ms), 0 表示暂停
wait_time = 1
video = mmcv.VideoReader('video.mp4')
cv2.namedWindow('video', 0)
for frame in track_iter_progress(video_reader):
result = inference_detector(model, frame, test_pipeline=test_pipeline)
visualizer.add_datasample(
name='video',
image=frame,
data_sample=result,
draw_gt=False,
show=False)
frame = visualizer.get_image()
mmcv.imshow(frame, 'video', wait_time)
cv2.destroyAllWindows()
```
Jupyter notebook 上的演示样例在 [demo/inference_demo.ipynb](https://github.com/open-mmlab/mmdetection/blob/main/demo/inference_demo.ipynb) 。
注意: `inference_detector` 目前仅支持单张图片的推理。
## 演示样例
我们还提供了三个演示脚本,它们是使用高层编程接口实现的。[源码在此](https://github.com/open-mmlab/mmdetection/blob/main/demo) 。
### 图片样例
这是在单张图片上进行推理的脚本。
```shell
python demo/image_demo.py \
${IMAGE_FILE} \
${CONFIG_FILE} \
[--weights ${WEIGHTS}] \
[--device ${GPU_ID}] \
[--pred-score-thr ${SCORE_THR}]
```
运行样例:
```shell
python demo/image_demo.py demo/demo.jpg \
configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
--weights checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
--device cpu
```
### 摄像头样例
这是使用摄像头实时图片的推理脚本。
```shell
python demo/webcam_demo.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--camera-id ${CAMERA-ID}] \
[--score-thr ${SCORE_THR}]
```
运行样例:
```shell
python demo/webcam_demo.py \
configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth
```
### 视频样例
这是在视频样例上进行推理的脚本。
```shell
python demo/video_demo.py \
${VIDEO_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}] \
[--out ${OUT_FILE}] \
[--show] \
[--wait-time ${WAIT_TIME}]
```
运行样例:
```shell
python demo/video_demo.py demo/demo.mp4 \
configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
--out result.mp4
```
### 视频样例,显卡加速版本
这是在视频样例上进行推理的脚本,使用显卡加速。
```shell
python demo/video_gpuaccel_demo.py \
${VIDEO_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}] \
[--nvdecode] \
[--out ${OUT_FILE}] \
[--show] \
[--wait-time ${WAIT_TIME}]
```
运行样例:
```shell
python demo/video_gpuaccel_demo.py demo/demo.mp4 \
configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
--nvdecode --out result.mp4
```