|
|
|
from typing import List, Sequence, Tuple |
|
|
|
import torch |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.models.roi_heads import CascadeRoIHead |
|
from mmdet.models.task_modules.samplers import SamplingResult |
|
from mmdet.models.test_time_augs import merge_aug_masks |
|
from mmdet.models.utils.misc import empty_instances |
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox2roi, get_box_tensor |
|
from mmdet.utils import ConfigType, InstanceList, MultiConfig |
|
|
|
|
|
@MODELS.register_module(force=True) |
|
class DeticRoIHead(CascadeRoIHead): |
|
|
|
def init_mask_head(self, mask_roi_extractor: MultiConfig, |
|
mask_head: MultiConfig) -> None: |
|
"""Initialize mask head and mask roi extractor. |
|
|
|
Args: |
|
mask_head (dict): Config of mask in mask head. |
|
mask_roi_extractor (:obj:`ConfigDict`, dict or list): |
|
Config of mask roi extractor. |
|
""" |
|
self.mask_head = MODELS.build(mask_head) |
|
|
|
if mask_roi_extractor is not None: |
|
self.share_roi_extractor = False |
|
self.mask_roi_extractor = MODELS.build(mask_roi_extractor) |
|
else: |
|
self.share_roi_extractor = True |
|
self.mask_roi_extractor = self.bbox_roi_extractor |
|
|
|
def _refine_roi(self, x: Tuple[Tensor], rois: Tensor, |
|
batch_img_metas: List[dict], |
|
num_proposals_per_img: Sequence[int], **kwargs) -> tuple: |
|
"""Multi-stage refinement of RoI. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): shape (n, 5), [batch_ind, x1, y1, x2, y2] |
|
batch_img_metas (list[dict]): List of image information. |
|
num_proposals_per_img (sequence[int]): number of proposals |
|
in each image. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- rois (Tensor): Refined RoI. |
|
- cls_scores (list[Tensor]): Average predicted |
|
cls score per image. |
|
- bbox_preds (list[Tensor]): Bbox branch predictions |
|
for the last stage of per image. |
|
""" |
|
|
|
ms_scores = [] |
|
for stage in range(self.num_stages): |
|
bbox_results = self._bbox_forward( |
|
stage=stage, x=x, rois=rois, **kwargs) |
|
|
|
|
|
cls_scores = bbox_results['cls_score'].sigmoid() |
|
bbox_preds = bbox_results['bbox_pred'] |
|
|
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_scores = cls_scores.split(num_proposals_per_img, 0) |
|
ms_scores.append(cls_scores) |
|
bbox_preds = bbox_preds.split(num_proposals_per_img, 0) |
|
|
|
if stage < self.num_stages - 1: |
|
bbox_head = self.bbox_head[stage] |
|
refine_rois_list = [] |
|
for i in range(len(batch_img_metas)): |
|
if rois[i].shape[0] > 0: |
|
bbox_label = cls_scores[i][:, :-1].argmax(dim=1) |
|
|
|
|
|
refined_bboxes = bbox_head.regress_by_class( |
|
rois[i][:, 1:], bbox_label, bbox_preds[i], |
|
batch_img_metas[i]) |
|
refined_bboxes = get_box_tensor(refined_bboxes) |
|
refined_rois = torch.cat( |
|
[rois[i][:, [0]], refined_bboxes], dim=1) |
|
refine_rois_list.append(refined_rois) |
|
rois = torch.cat(refine_rois_list) |
|
|
|
|
|
cls_scores = [ |
|
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) |
|
for i in range(len(batch_img_metas)) |
|
] |
|
return rois, cls_scores, bbox_preds |
|
|
|
def _bbox_forward(self, stage: int, x: Tuple[Tensor], |
|
rois: Tensor) -> dict: |
|
"""Box head forward function used in both training and testing. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
""" |
|
bbox_roi_extractor = self.bbox_roi_extractor[stage] |
|
bbox_head = self.bbox_head[stage] |
|
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], |
|
rois) |
|
|
|
cls_score, bbox_pred = bbox_head(bbox_feats) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) |
|
return bbox_results |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False, |
|
**kwargs) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
proposals = [res.bboxes for res in rpn_results_list] |
|
proposal_scores = [res.scores for res in rpn_results_list] |
|
num_proposals_per_img = tuple(len(p) for p in proposals) |
|
rois = bbox2roi(proposals) |
|
|
|
if rois.shape[0] == 0: |
|
return empty_instances( |
|
batch_img_metas, |
|
rois.device, |
|
task_type='bbox', |
|
box_type=self.bbox_head[-1].predict_box_type, |
|
num_classes=self.bbox_head[-1].num_classes, |
|
score_per_cls=rcnn_test_cfg is None) |
|
|
|
rois, cls_scores, bbox_preds = self._refine_roi( |
|
x=x, |
|
rois=rois, |
|
batch_img_metas=batch_img_metas, |
|
num_proposals_per_img=num_proposals_per_img, |
|
**kwargs) |
|
|
|
|
|
cls_scores = [(s * ps[:, None])**0.5 |
|
for s, ps in zip(cls_scores, proposal_scores)] |
|
cls_scores = [ |
|
s * (s == s[:, :-1].max(dim=1)[0][:, None]).float() |
|
for s in cls_scores |
|
] |
|
|
|
|
|
results_list = self.bbox_head[-1].predict_by_feat( |
|
rois=rois, |
|
cls_scores=cls_scores, |
|
bbox_preds=bbox_preds, |
|
batch_img_metas=batch_img_metas, |
|
rescale=rescale, |
|
rcnn_test_cfg=rcnn_test_cfg) |
|
return results_list |
|
|
|
def _mask_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict: |
|
"""Mask head forward function used in both training and testing. |
|
|
|
Args: |
|
stage (int): The current stage in Cascade RoI Head. |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
""" |
|
mask_feats = self.mask_roi_extractor( |
|
x[:self.mask_roi_extractor.num_inputs], rois) |
|
|
|
mask_preds = self.mask_head(mask_feats) |
|
|
|
mask_results = dict(mask_preds=mask_preds) |
|
return mask_results |
|
|
|
def mask_loss(self, x, sampling_results: List[SamplingResult], |
|
batch_gt_instances: InstanceList) -> dict: |
|
"""Run forward function and calculate loss for mask head in training. |
|
|
|
Args: |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes``, ``labels``, and |
|
``masks`` attributes. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
- `loss_mask` (dict): A dictionary of mask loss components. |
|
""" |
|
pos_rois = bbox2roi([res.pos_priors for res in sampling_results]) |
|
mask_results = self._mask_forward(x, pos_rois) |
|
|
|
mask_loss_and_target = self.mask_head.loss_and_target( |
|
mask_preds=mask_results['mask_preds'], |
|
sampling_results=sampling_results, |
|
batch_gt_instances=batch_gt_instances, |
|
rcnn_train_cfg=self.train_cfg[-1]) |
|
mask_results.update(mask_loss_and_target) |
|
|
|
return mask_results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components |
|
""" |
|
raise NotImplementedError |
|
|
|
def predict_mask(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
results_list: List[InstanceData], |
|
rescale: bool = False) -> List[InstanceData]: |
|
"""Perform forward propagation of the mask head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
results_list (list[:obj:`InstanceData`]): Detection results of |
|
each image. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
""" |
|
bboxes = [res.bboxes for res in results_list] |
|
mask_rois = bbox2roi(bboxes) |
|
if mask_rois.shape[0] == 0: |
|
results_list = empty_instances( |
|
batch_img_metas, |
|
mask_rois.device, |
|
task_type='mask', |
|
instance_results=results_list, |
|
mask_thr_binary=self.test_cfg.mask_thr_binary) |
|
return results_list |
|
|
|
num_mask_rois_per_img = [len(res) for res in results_list] |
|
aug_masks = [] |
|
mask_results = self._mask_forward(x, mask_rois) |
|
mask_preds = mask_results['mask_preds'] |
|
|
|
mask_preds = mask_preds.split(num_mask_rois_per_img, 0) |
|
aug_masks.append([m.sigmoid().detach() for m in mask_preds]) |
|
|
|
merged_masks = [] |
|
for i in range(len(batch_img_metas)): |
|
aug_mask = [mask[i] for mask in aug_masks] |
|
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i]) |
|
merged_masks.append(merged_mask) |
|
results_list = self.mask_head.predict_by_feat( |
|
mask_preds=merged_masks, |
|
results_list=results_list, |
|
batch_img_metas=batch_img_metas, |
|
rcnn_test_cfg=self.test_cfg, |
|
rescale=rescale, |
|
activate_map=True) |
|
return results_list |
|
|