Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
import copy
import os.path as osp
import unittest
from mmcv.transforms import Compose
from mmdet.datasets.transforms import MultiBranch, RandomOrder
from mmdet.utils import register_all_modules
from .utils import construct_toy_data
register_all_modules()
class TestMultiBranch(unittest.TestCase):
def setUp(self):
"""Setup the model and optimizer which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
data_prefix = osp.join(osp.dirname(__file__), '../../data')
img_path = osp.join(data_prefix, 'color.jpg')
seg_map = osp.join(data_prefix, 'gray.jpg')
self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction',
'homography_matrix')
self.results = {
'img_path':
img_path,
'img_id':
12345,
'img_shape': (300, 400),
'seg_map_path':
seg_map,
'instances': [{
'bbox': [0, 0, 10, 20],
'bbox_label': 1,
'mask': [[0, 0, 0, 20, 10, 20, 10, 0]],
'ignore_flag': 0
}, {
'bbox': [10, 10, 110, 120],
'bbox_label': 2,
'mask': [[10, 10, 110, 10, 110, 120, 110, 10]],
'ignore_flag': 0
}, {
'bbox': [50, 50, 60, 80],
'bbox_label': 2,
'mask': [[50, 50, 60, 50, 60, 80, 50, 80]],
'ignore_flag': 1
}]
}
self.branch_field = ['sup', 'sup_teacher', 'sup_student']
self.weak_pipeline = [
dict(type='ShearX'),
dict(type='PackDetInputs', meta_keys=self.meta_keys)
]
self.strong_pipeline = [
dict(type='ShearX'),
dict(type='ShearY'),
dict(type='PackDetInputs', meta_keys=self.meta_keys)
]
self.labeled_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
with_seg=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(
type='MultiBranch',
branch_field=self.branch_field,
sup_teacher=self.weak_pipeline,
sup_student=self.strong_pipeline),
]
self.unlabeled_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(
type='MultiBranch',
branch_field=self.branch_field,
unsup_teacher=self.weak_pipeline,
unsup_student=self.strong_pipeline),
]
def test_transform(self):
labeled_pipeline = Compose(self.labeled_pipeline)
labeled_results = labeled_pipeline(copy.deepcopy(self.results))
unlabeled_pipeline = Compose(self.unlabeled_pipeline)
unlabeled_results = unlabeled_pipeline(copy.deepcopy(self.results))
# test branch sup_teacher and sup_student
sup_branches = ['sup_teacher', 'sup_student']
for branch in sup_branches:
self.assertIn(branch, labeled_results['data_samples'])
self.assertIn('homography_matrix',
labeled_results['data_samples'][branch])
self.assertIn('labels',
labeled_results['data_samples'][branch].gt_instances)
self.assertIn('bboxes',
labeled_results['data_samples'][branch].gt_instances)
self.assertIn('masks',
labeled_results['data_samples'][branch].gt_instances)
self.assertIn('gt_sem_seg',
labeled_results['data_samples'][branch])
# test branch unsup_teacher and unsup_student
unsup_branches = ['unsup_teacher', 'unsup_student']
for branch in unsup_branches:
self.assertIn(branch, unlabeled_results['data_samples'])
self.assertIn('homography_matrix',
unlabeled_results['data_samples'][branch])
self.assertNotIn(
'labels',
unlabeled_results['data_samples'][branch].gt_instances)
self.assertNotIn(
'bboxes',
unlabeled_results['data_samples'][branch].gt_instances)
self.assertNotIn(
'masks',
unlabeled_results['data_samples'][branch].gt_instances)
self.assertNotIn('gt_sem_seg',
unlabeled_results['data_samples'][branch])
def test_repr(self):
pipeline = [dict(type='PackDetInputs', meta_keys=())]
transform = MultiBranch(
branch_field=self.branch_field, sup=pipeline, unsup=pipeline)
self.assertEqual(
repr(transform),
("MultiBranch(branch_pipelines=['sup', 'unsup'])"))
class TestRandomOrder(unittest.TestCase):
def setUp(self):
"""Setup the model and optimizer which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
self.results = construct_toy_data(poly2mask=True)
self.pipeline = [
dict(type='Sharpness'),
dict(type='Contrast'),
dict(type='Brightness'),
dict(type='Rotate'),
dict(type='ShearX'),
dict(type='TranslateY')
]
def test_transform(self):
transform = RandomOrder(self.pipeline)
results = transform(copy.deepcopy(self.results))
self.assertEqual(results['img_shape'], self.results['img_shape'])
self.assertEqual(results['gt_bboxes'].shape,
self.results['gt_bboxes'].shape)
self.assertEqual(results['gt_bboxes_labels'],
self.results['gt_bboxes_labels'])
self.assertEqual(results['gt_ignore_flags'],
self.results['gt_ignore_flags'])
self.assertEqual(results['gt_masks'].masks.shape,
self.results['gt_masks'].masks.shape)
self.assertEqual(results['gt_seg_map'].shape,
self.results['gt_seg_map'].shape)
def test_repr(self):
transform = RandomOrder(self.pipeline)
self.assertEqual(
repr(transform), ('RandomOrder(Sharpness, Contrast, '
'Brightness, Rotate, ShearX, TranslateY, )'))