ynat-model

This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4154
  • Accuracy: 0.8588
  • Precision: 0.8471
  • Recall: 0.8723
  • F1: 0.8590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4166 1.0 714 0.5089 0.8208 0.8030 0.8649 0.8280
0.3101 2.0 1428 0.4026 0.8558 0.8422 0.8704 0.8552
0.2329 3.0 2142 0.4154 0.8588 0.8471 0.8723 0.8590

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
113M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Seonghaa/ynat-model

Finetuned
(24)
this model