File size: 18,251 Bytes
a479bac edcaa5d a479bac edcaa5d a479bac edcaa5d a479bac 7cc3b2c edcaa5d 7cc3b2c edcaa5d a479bac edcaa5d a479bac 14b7fc4 7cc3b2c 14b7fc4 a479bac 14b7fc4 a479bac 14b7fc4 7cc3b2c 14b7fc4 a479bac 7520b9d a479bac 14b7fc4 7cc3b2c a479bac 14b7fc4 edcaa5d 14b7fc4 a479bac 14b7fc4 a479bac 14b7fc4 4487bd6 14b7fc4 edcaa5d 4487bd6 14b7fc4 edcaa5d a479bac 7520b9d a479bac edcaa5d 7cc3b2c 14b7fc4 a479bac 14b7fc4 edcaa5d 4487bd6 14b7fc4 a479bac 14b7fc4 a479bac 14b7fc4 7cc3b2c edcaa5d a479bac 14b7fc4 7cc3b2c a479bac edcaa5d a479bac 7cc3b2c a479bac edcaa5d a479bac 7cc3b2c a479bac 7cc3b2c a479bac 7cc3b2c a479bac 7cc3b2c a479bac 7cc3b2c a479bac 14b7fc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import os
import warnings
import logging
from itertools import chain
import torch
from torch import nn, Tensor
from typing import Optional, Dict
import numpy as np
from datetime import datetime
from dataclasses import dataclass
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
from torch.nn.functional import scaled_dot_product_attention
from echoutils import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
@dataclass
class Dimensions:
vocab: int
mels: int
ctx: int
dims: int
head: int
layer: int
act: str
class rotary(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.theta = nn.Parameter((torch.tensor(10000, device=device, dtype=dtype)), requires_grad=True)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x, ctx) -> Tensor:
freqs = (self.theta / 220.0) * self.freqs_base
pos = torch.arange(ctx, device=device, dtype=dtype)
freqs = pos[:, None] * freqs
freqs=torch.polar(torch.ones_like(freqs), freqs)
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
def shape(self, tensor: torch.Tensor, ctx: int, batch: int):
return tensor.view(batch, ctx, self.head, self.head_dim).transpose(1, 2).contiguous()
def reshape_to_output(self, attn_output, batch, ctx):
return attn_output.permute(0, 2, 1, 3).reshape(batch, ctx, self.dims).contiguous()
def qkv_init(dims: int, head: int):
head_dim = dims // head
q = nn.Linear(dims, dims)
k = nn.Linear(dims, dims, bias=False)
v = nn.Linear(dims, dims)
o = nn.Linear(dims, dims)
lna = nn.LayerNorm(dims, bias=False)
lnb = nn.LayerNorm(head_dim, bias=False)
return q, k, v, o, lna, lnb
def create_qkv(dims, head, q, k, v, x, xa=None):
z = default(xa, x)
head_dim = dims // head
scale = head_dim ** -0.25
q = q(x) * scale
k = k(z) * scale
v = v(z)
batch, ctx, dims = q.shape
def _shape(tensor):
return tensor.view(batch, ctx, head, head_dim).transpose(1, 2).contiguous()
return _shape(q), _shape(k), _shape(v)
def calculate_attention(q, k, v, mask=None, temperature=1.0):
batch, head, ctx, dims = q.shape
scaled_q = q
if temperature != 1.0 and temperature > 0:
scaled_q = q * (1.0 / temperature)**.5
a = scaled_dot_product_attention(scaled_q, k, v, is_causal=mask is not None and q.shape[1] > 1)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
return out, None
class LocalAttentionModule(nn.Module):
def __init__(self, head_dim: int):
super().__init__()
self.head_dim = head_dim
self.query_module = nn.Linear(head_dim, head_dim)
self.key_module = nn.Linear(head_dim, head_dim)
self.value_module = nn.Linear(head_dim, head_dim)
self.out_proj = nn.Linear(head_dim, head_dim)
def _reshape_to_output(self, x):
return x
class attentiona(nn.Module):
def __init__(self, dims: int, head: int, max_iters: int = 3, threshold: float = 0.01, factor: float = 0.1, dropout: float = 0.1):
super(attention, self).__init__()
self.q, self.k, self.v, self.o, self.lna, self.lnb = qkv_init(dims, head)
self.dims = dims
self.head = head
self.head_dim = dims // head
self.dropout = dropout
self.max_iters = max_iters
self.rope = rotary(dims=dims, head=head)
self.threshold = nn.Parameter(torch.tensor(threshold))
self.factor = nn.Parameter(torch.tensor(factor))
self.attn_local = LocalAttentionModule(self.head_dim)
def _focus(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None):
z = default(xa, x)
q, k, v = create_qkv(self.dims, self.head, self.q, self.k, self.v, self.lna(x), self.lna(z))
# q=self.lnb(q)
# k=self.lnb(k)
iteration = 0
prev_attn = torch.zeros_like(q)
attn_out = torch.zeros_like(q)
threshold = self.threshold.item()
factor = self.factor.item()
q_cur = q
while iteration < self.max_iters:
eff_span = z.shape[1]
if eff_span == 0:
break
q_iter = q_cur[:, :, :eff_span, :]
k_iter = k[:, :, :eff_span, :]
v_iter = v[:, :, :eff_span, :]
q = self.attn_local.query_module(q_iter)
k = self.attn_local.key_module(k_iter)
v = self.attn_local.value_module(v_iter)
iter_mask = None
if mask is not None:
if mask.dim() == 4:
iter_mask = mask[:, :, :eff_span, :eff_span]
elif mask.dim() == 2:
iter_mask = mask[:eff_span, :eff_span]
q = self.rope(q, q.shape[2])
k = self.rope(k, k.shape[2])
attn_iter, _ = calculate_attention(
self.lnb(q), self.lnb(k), v, mask=iter_mask)
out_span = self.attn_local._reshape_to_output(attn_iter)
if out_span.dim() == 4:
b, h, s, d = out_span.shape
proj_span = self.attn_local.out_proj(out_span.view(-1, d)).view(b, h, s, -1)
elif out_span.dim() == 3:
b, s, d = out_span.shape
if d == self.head_dim:
proj_span = self.attn_local.out_proj(out_span.view(-1, d)).view(b, 1, s, -1)
elif d == self.head * self.head_dim:
proj_span = out_span.view(b, self.head, s, self.head_dim)
else:
raise RuntimeError(f"Cannot reshape out_span of shape {out_span.shape} to [b, h, s, head_dim]")
else:
raise RuntimeError(f"Unexpected out_span shape: {out_span.shape}")
iter_out = torch.zeros_like(q_cur)
iter_out[:, :, :eff_span, :] = proj_span
diff = torch.abs(iter_out - prev_attn).mean()
dthresh = threshold + factor * diff
if diff < dthresh and iteration > 0:
attn_out = iter_out
break
prev_attn = iter_out.clone()
q_cur = q_cur + iter_out
attn_out = iter_out
iteration += 1
output = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(output), None
def _slide_win_local(self, x: Tensor, win_size: int, span_len: int,
mask: Optional[Tensor] = None) -> Tensor:
batch, ctx, dims = x.shape
output = torch.zeros_like(x)
num_win = (ctx + win_size - 1) // win_size
for i in range(num_win):
q_start = i * win_size
q_end = min(q_start + win_size, ctx)
q_len = q_end - q_start
if q_len == 0:
continue
kv_start = max(0, q_end - span_len)
kv_end = q_end
query_win = x[:, q_start:q_end, :]
key_win = x[:, kv_start:kv_end, :]
win_mask = None
if mask is not None:
if mask.dim() == 4:
win_mask = mask[:, :, q_start:q_end, kv_start:kv_end]
elif mask.dim() == 2:
win_mask = mask[q_start:q_end, kv_start:kv_end]
attn_out_win, _ = self._focus(
x=query_win,
xa=key_win,
mask=win_mask)
output[:, q_start:q_end, :] = attn_out_win
return output
def forward(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None,
use_sliding_window: bool = False, win_size: int = 512, span_len: int = 1024) -> Tensor:
if use_sliding_window:
return self._slide_win_local(x, win_size, span_len, mask)
else:
output, _ = self._focus(x, xa, mask)
return output
class attentionb(nn.Module):
def __init__(self, dims: int, head: int):
super(attentionb, self).__init__()
self.q, self.k, self.v, self.o, self.lna, self.lnb = qkv_init(dims, head)
self.dims = dims
self.head = head
self.head_dim = dims // head
self.rope = rotary(dims=dims, head=head)
def forward(self, x: Tensor, xa = None, mask = None):
z = default(xa, x)
q, k, v = create_qkv(self.dims, self.head, self.q, self.k, self.v, self.lna(x), self.lna(z))
q = self.rope(q, q.shape[2])
k = self.rope(k, k.shape[2])
a = scaled_dot_product_attention(self.lnb(q), self.lnb(k), v, is_causal=mask is not None and q.shape[1] > 1)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(out)
class Residual(nn.Module):
def __init__(self, dims: int, head: int, act: str = "silu"):
super().__init__()
self.lna = nn.LayerNorm(dims, bias=False)
self.attnb = attentionb(dims, head)
self.attna = attentiona(dims, head, max_iters=3)
self.mlp = nn.Sequential(Linear(dims, dims*4), get_activation(act), Linear(dims*4, dims))
def forward(self, x, xa = None, mask = None) -> Tensor:
x = x + self.attnb(self.lna(x), xa=None, mask=mask)
if xa is not None:
x = x + self.attna(self.lna(x), xa, mask=None, use_sliding_window=True, win_size=500, span_len=1500)
x = x + self.mlp(self.lna(x))
return x
class processor(nn.Module):
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
super(processor, self).__init__()
self.ln = nn.LayerNorm(dims, device=device, dtype=dtype)
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
self.posin = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
act_fn = get_activation(act)
self.encoder = nn.Sequential(
Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
self.bA = nn.ModuleList([Residual(dims=dims, head=head, act=act_fn) for _ in range(layer)])
self.bB = nn.ModuleList([Residual(dims=dims, head=head, act=act_fn) for _ in range(layer)])
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, xa, sequential=False) -> Tensor:
x = self.token(x.long()) + self.positional[:x.shape[1]]
xa = self.encoder(xa).permute(0, 2, 1)
xa = xa + self.posin(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)
for b in chain(self.bA or []):
xa = b(x=xa, xa=None, mask=None)
for b in chain(self.bB or []):
x = b(x=x, xa=None, mask=self.mask)
y = b(x, xa=xa, mask=None)
if sequential:
x = y
else:
a = torch.sigmoid(self.blend)
x = a * y + (1 - a) * x
x = nn.functional.dropout(x, p=0.001, training=self.training)
x = self.ln(x)
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
return x
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
class Model(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.processor = processor(
vocab=param.vocab,
mels=param.mels,
ctx=param.ctx,
dims=param.dims,
head=param.head,
layer=param.layer,
act=param.act)
def forward(self,
labels=None, input_ids=None, pitch: Optional[torch.Tensor]=None) -> Dict[str, Optional[torch.Tensor]]:
x = input_ids
xa = pitch if pitch is not None else torch.zeros(1, 1, self.param.mels, device=device, dtype=dtype)
logits = self.processor(x, xa)
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
return {"logits": logits, "loss": loss}
def _init_weights(self, module):
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "processor": 0, "attention": 0, "Residual": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, attention):
self.init_counts["attention"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
elif isinstance(module, processor):
self.init_counts["processor"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
def main():
token = ""
log_dir = os.path.join('D:/newmodel/output/logs/', datetime.now().strftime('%m-%d_%H_%M_%S'))
os.makedirs(log_dir, exist_ok=True)
tokenizer = setup_tokenizer("D:/newmodel/mod5/tokenizer.json")
extract_args = {
"waveform": False,
"spec": False,
"f0": False,
"f0t": False,
"pitch": True,
"harmonics": False,
"aperiodics": False,
"phase_mod": False,
"crepe": False,
"sample_rate": 16000,
"hop_length": 256,
"mode": "mean",
"debug": False,
}
param = Dimensions(
vocab=40000,
mels=128,
ctx=2048,
dims=512,
head=4,
layer=4,
act="swish",
)
train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=False,
load_saved=False, save_dataset=False, cache_dir=None, extract_args=extract_args, max_ctx=param.ctx)
model = Model(param).to('cuda')
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
from functools import partial
metrics_fn = partial(compute_metrics, print_pred=True, num_samples=1, tokenizer=tokenizer, model=model)
training_args = Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
max_steps=1000,
eval_steps=100,
save_steps=1000,
warmup_steps=100,
logging_steps=10,
logging_dir=log_dir,
logging_strategy="steps",
eval_strategy="steps",
save_strategy="no",
report_to=["tensorboard"],
push_to_hub=False,
save_total_limit=1,
label_names=["labels"],
save_safetensors=False,
eval_on_start=False,
batch_eval_metrics=False,
disable_tqdm=False,
include_tokens_per_second=True,
include_num_input_tokens_seen=True,
learning_rate=0.00025,
weight_decay=0.025,
)
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999),
amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=metrics_fn,
optimizers=(optimizer, scheduler)
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()
|