File size: 40,802 Bytes
e284fca
 
 
 
79a5277
e284fca
 
 
79a5277
 
e284fca
80c70a4
 
79a5277
80c70a4
 
79a5277
80c70a4
e284fca
 
80c70a4
e284fca
 
 
79a5277
 
e284fca
 
 
 
 
 
 
 
79a5277
83198ca
79a5277
 
 
 
 
 
83198ca
09b0505
 
 
79a5277
09b0505
79a5277
09b0505
79a5277
09b0505
79a5277
09b0505
 
e284fca
 
 
 
 
 
 
 
 
80c70a4
 
 
 
 
83198ca
80c70a4
 
 
 
 
 
 
 
 
 
 
75becfe
 
 
80c70a4
75becfe
e284fca
75becfe
79a5277
75becfe
79a5277
75becfe
e284fca
75becfe
 
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
83198ca
79a5277
 
 
 
83198ca
79a5277
 
 
 
 
 
 
e284fca
80c70a4
 
75becfe
09b0505
79a5277
 
 
 
 
 
 
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b0505
79a5277
 
e284fca
79a5277
e284fca
79a5277
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5277
 
e284fca
 
 
 
 
 
 
79a5277
 
e284fca
 
80c70a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e284fca
79a5277
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5277
 
e284fca
 
 
 
 
 
 
80c70a4
 
 
79a5277
80c70a4
 
 
e284fca
 
 
 
 
79a5277
 
 
 
80c70a4
79a5277
e284fca
 
 
79a5277
e284fca
 
 
 
 
79a5277
 
 
 
83198ca
e284fca
80c70a4
e284fca
80c70a4
e284fca
 
 
 
 
 
 
80c70a4
 
e284fca
 
 
 
 
 
80c70a4
e284fca
80c70a4
 
 
 
 
 
e284fca
80c70a4
 
e284fca
 
 
 
 
 
 
 
80c70a4
e284fca
80c70a4
 
 
 
 
 
 
 
e284fca
 
80c70a4
 
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
80c70a4
79a5277
80c70a4
 
 
 
83198ca
79a5277
80c70a4
 
 
 
e284fca
 
80c70a4
83198ca
e284fca
 
 
 
 
 
 
 
 
 
83198ca
80c70a4
e284fca
80c70a4
 
79a5277
80c70a4
 
 
 
 
e284fca
 
 
 
80c70a4
 
 
83198ca
e284fca
 
80c70a4
e284fca
 
79a5277
83198ca
80c70a4
79a5277
80c70a4
 
 
 
 
 
 
e284fca
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e284fca
79a5277
e284fca
 
 
 
 
 
 
79a5277
80c70a4
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
e284fca
79a5277
 
 
 
e284fca
 
79a5277
e284fca
 
79a5277
e284fca
 
79a5277
e284fca
 
79a5277
 
e284fca
79a5277
e284fca
 
79a5277
e284fca
 
79a5277
e284fca
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
e284fca
79a5277
 
e284fca
 
79a5277
e284fca
 
 
 
 
 
 
79a5277
80c70a4
79a5277
e284fca
79a5277
 
 
 
e284fca
79a5277
 
e284fca
 
79a5277
e284fca
 
79a5277
e284fca
 
79a5277
 
e284fca
 
 
79a5277
 
 
 
e284fca
79a5277
e284fca
79a5277
e284fca
79a5277
 
 
e284fca
 
 
79a5277
e284fca
 
 
 
79a5277
e284fca
 
79a5277
80c70a4
79a5277
e284fca
79a5277
 
 
83198ca
e284fca
79a5277
e284fca
 
79a5277
 
e284fca
79a5277
 
e284fca
 
79a5277
 
e284fca
 
 
79a5277
 
 
 
 
 
e284fca
79a5277
e284fca
79a5277
 
 
 
 
e284fca
75becfe
 
 
 
 
79a5277
 
 
 
e284fca
 
75becfe
e284fca
75becfe
 
79a5277
e284fca
80c70a4
 
75becfe
79a5277
 
 
75becfe
 
 
 
 
e284fca
 
 
 
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b0505
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83198ca
75becfe
79a5277
 
75becfe
79a5277
 
09b0505
e284fca
79a5277
 
e284fca
 
 
 
83198ca
75becfe
80c70a4
e284fca
80c70a4
 
 
 
e284fca
80c70a4
75becfe
 
e284fca
 
 
 
80c70a4
 
e284fca
 
75becfe
 
 
79a5277
80c70a4
e284fca
79a5277
 
 
e284fca
79a5277
75becfe
79a5277
75becfe
79a5277
75becfe
79a5277
 
 
 
 
 
 
 
 
 
 
 
e284fca
79a5277
e284fca
 
 
 
 
75becfe
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
79a5277
87411f1
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5277
 
 
 
 
 
 
 
 
 
 
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75becfe
e284fca
75becfe
e284fca
75becfe
e284fca
75becfe
e284fca
75becfe
e284fca
75becfe
e284fca
75becfe
80c70a4
e284fca
 
75becfe
 
e284fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b0505
5be2284
 
 
 
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b0505
5be2284
75becfe
 
79a5277
75becfe
 
 
 
79a5277
 
80c70a4
79a5277
 
 
 
5be2284
 
 
79a5277
5be2284
80c70a4
79a5277
 
80c70a4
 
79a5277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c70a4
 
 
5be2284
 
 
d56f7a6
 
 
09b0505
5be2284
d56f7a6
5be2284
83198ca
5be2284
 
 
83198ca
79a5277
83198ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
import os
import math
import warnings
import logging
from itertools import chain
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from tensordict import TensorDict
from typing import Optional, Dict, Union, List, Tuple
import numpy as np
from functools import partial
from datetime import datetime
from tensordict import TensorDict
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
from echoutils import *

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)

class rotary(nn.Module):
    def __init__(self, dims, head, max_ctx=1500, radii=False, debug: List[str] = [], use_pbias=False, axial=False, spec_shape=None):

        super(rotary, self).__init__()
        self.use_pbias = use_pbias
        self.dims = dims
        self.head = head
        self.head_dim = dims // head
        self.radii = radii
        self.debug = debug
        self.counter = 0
        self.last_theta = None
        self.axial = axial

        self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2), requires_grad=True if use_pbias else False)
        theta = (torch.tensor(10000, device=device, dtype=dtype))
        self.theta = nn.Parameter(theta, requires_grad=True)    
        self.theta_values = []

        if axial and spec_shape is not None:
            time_frames, freq_bins = spec_shape
            self.time_frames = time_frames
            self.freq_bins = freq_bins
            
            time_theta = 50.0
            time_freqs = 1.0 / (time_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
            self.register_buffer('time_freqs', time_freqs)
            
            freq_theta = 100.0
            freq_freqs = 1.0 / (freq_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
            self.register_buffer('freq_freqs', freq_freqs)

    def pitch_bias(self, f0):
        if f0 is None:
            return None
        f0_flat = f0.squeeze().float()
        f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
        f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1), 
                                    f0_norm.unsqueeze(1)))
        return f0_sim.unsqueeze(0).unsqueeze(0)

    def theta_freqs(self, theta):
        if theta.dim() == 0:
            theta = theta.unsqueeze(0)
        freq = (theta.unsqueeze(-1) / 220.0) * 700 * (
            torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), 
                    self.head_dim // 2, device=theta.device, dtype=theta.dtype) / 2595) - 1) / 1000
        return freq

    def _apply_radii(self, freqs, f0, ctx):
        if self.radii and f0 is not None:
            radius = f0.to(device, dtype)
            L = radius.shape[0]
            if L != ctx:
                F = L / ctx
                idx = torch.arange(ctx, device=f0.device)
                idx = (idx * F).long().clamp(0, L - 1)
                radius = radius[idx]
                return torch.polar(radius.unsqueeze(-1), freqs), radius
            else:
                return torch.polar(radius.unsqueeze(-1), freqs), radius
        else:
            return torch.polar(torch.ones_like(freqs), freqs), None

    def check_f0(self, f0, f0t, ctx):
        if f0 is not None and f0.shape[1] == ctx:
            return f0
        elif f0t is not None and f0t.shape[1] == ctx:
            return f0t
        else:
            return None         

    def axial_freqs(self, ctx):
        if not self.axial:
            return None
        time_frames = self.time_frames
        freq_bins = self.freq_bins
    
        t = torch.arange(ctx, device=device, dtype=dtype)
        t_x = (t % time_frames).float()
        t_y = torch.div(t, time_frames, rounding_mode='floor').float()
        freqs_x = torch.outer(t_x, self.time_freqs)
        freqs_y = torch.outer(t_y, self.freq_freqs)
        freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
        freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
        return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)

    def forward(self, x=None, en=None, f=None, layer=None) -> Tensor:
        ctx=x
        f0 = en.get("f0") if en is not None else None 
        f0t = en.get("f0t") if en is not None else None 

        f0 = self.check_f0(f0, f0t, ctx)
        if f0 is not None:
            if f0.dim() == 2:
                f0 = f0.squeeze(0) 
            theta = f0 + self.theta  
        else:
            theta = self.theta 
        freqs = self.theta_freqs(theta)
        t = torch.arange(ctx, device=device, dtype=dtype)
        freqs = t[:, None] * freqs
        freqs, radius = self._apply_radii(freqs, f0, ctx)

        if self.axial and f == "spectrogram":
            freqs_2d = self.axial_freqs(ctx)
            if freqs_2d is not None:
                return freqs_2d.unsqueeze(0)

        if "radius" in self.debug and self.counter == 10:
            print(f"  [{layer}] [Radius] {radius.shape if radius is not None else None} {radius.mean() if radius is not None else None} [Theta] {theta.mean() if theta is not None else None} [f0] {f0.shape if f0 is not None else None} [Freqs] {freqs.shape} {freqs.mean():.2f} [ctx] {ctx}")
        self.counter += 1
        return freqs.unsqueeze(0)

    @staticmethod
    def apply_rotary(x, freqs):
        x1 = x[..., :freqs.shape[-1]*2]
        x2 = x[..., freqs.shape[-1]*2:]
        orig_shape = x1.shape
        if x1.ndim == 2:
            x1 = x1.unsqueeze(0)
        x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
        x1 = torch.view_as_complex(x1) * freqs
        x1 = torch.view_as_real(x1).flatten(-2)
        x1 = x1.view(orig_shape)
        return torch.cat([x1.type_as(x), x2], dim=-1)

class MultiheadA(nn.Module):

    rbf = False
    def __init__(self, dims: int, head: int, rotary_emb: bool = True, 
                 zero_val: float = 1e-7, minz: float = 1e-8, maxz: float = 1e-6, debug: List[str] = [], optim_attn=False, use_pbias=False):
        super(MultiheadA, self).__init__()

        self.dims = dims
        self.head = head
        self.head_dim = dims // head
        self.debug = debug
        self.counter = 0
        self.use_pbias = use_pbias

        self.q = nn.Linear(dims, dims).to(device, dtype)
        self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
        self.v = nn.Linear(dims, dims).to(device, dtype)
        self.o = nn.Linear(dims, dims).to(device, dtype)

        self.pad_token = 0
        self.rotary_emb = rotary_emb
        self.minz = minz
        self.maxz = maxz
        self.zero_val = zero_val
        self.optim_attn = optim_attn        
        self.fzero = nn.Parameter(torch.tensor(zero_val, device=device, dtype=dtype), requires_grad=False)
        
        if rotary_emb:
            self.rope = rotary(
                dims=dims,
                head=head,
                debug=debug,
                radii=False,
                )
        else:
            self.rope = None

    def cos_sim(self, q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
        q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
        k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
        qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
        qk_cosine = qk_cosine + mask
        weights = F.softmax(qk_cosine, dim=-1)
        out = torch.matmul(weights, v)
        return out

    def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
        scale = (self.dims // self.head) ** -0.25
        dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
        if rbf_ratio <= 0.0:
            return dot_scores
        q_norm = q.pow(2).sum(dim=-1, keepdim=True)
        k_norm = k.pow(2).sum(dim=-1, keepdim=True)
        qk = torch.matmul(q, k.transpose(-1, -2))
        dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
        rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
        return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
          
    def forward(self, x: Tensor, xa = None, mask = None, en= None, layer = None, f=None) -> tuple:

        x = x.to(device, dtype)
        if xa is not None:
            xa = xa.to(device, dtype)
        scale = (self.dims // self.head) ** -0.25
        
        z = default(xa, x).to(device, dtype)
        q = self.q(x)
        k = self.k(z)
        v = self.v(z)

        if self.rotary_emb:   
            q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
            k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
            v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
            q2 = q.shape[2]
            k2 = k.shape[2]

            q = self.rope.apply_rotary(q, (self.rope(x=q2, en=en, f=f, layer=layer)))
            k = self.rope.apply_rotary(k, (self.rope(x=k2, en=en, f=f, layer=layer)))
        else:
            q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
            k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
            v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
        
        qk = (q * scale) @ (k * scale).transpose(-1, -2)

        if self.rbf:
            qk = self.rbf_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
        if self.use_pbias:
            pbias = self.rope.pitch_bias(f0 = en.get("f0", None) if en is not None else None) 
            if pbias is not None:
                qk = qk + pbias[:,:,:q2,:q2]

        token_ids = k[:, :, :, 0]
        zscale = torch.ones_like(token_ids)
        fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
        zscale[token_ids.float() == self.pad_token] = fzero
        
        if mask is not None:
            if mask.dim() == 4:
                mask = mask[0, 0]
            mask = mask[:q2, :k2] if xa is not None else mask[:q2, :q2]
            qk = qk + mask * zscale.unsqueeze(-2).expand(qk.shape)

        qk = qk * zscale.unsqueeze(-2)
        w = F.softmax(qk, dim=-1).to(q.dtype)
        wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)

        if "multihead" in self.debug and self.counter % 100 == 0:
            print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
        self.counter += 1        
        return self.o(wv), qk

    @staticmethod
    def split(X: Tensor) -> (Tensor, Tensor):
        half_dim = X.shape[-1] // 2
        return X[..., :half_dim], X[..., half_dim:]

class t_gate(nn.Module):
    def __init__(self, dims, num_types=4, enabled=True):
        super().__init__()
        self.enabled = enabled
        self.gate_projections = nn.ModuleList([
            nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            for _ in range(num_types)])
        self.type_classifier = nn.Sequential(
            Linear(dims, num_types),
            nn.Softmax(dim=-1))
    def forward(self, x):
        if not self.enabled:
            return None
        type_probs = self.type_classifier(x)
        gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
        comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
        return comb_gate

class m_gate(nn.Module):
    def __init__(self, dims, mem_size=64, enabled=True):
        super().__init__()
        self.enabled = enabled
        if enabled:
            self.m_key = nn.Parameter(torch.randn(mem_size, dims))
            self.m_val = nn.Parameter(torch.randn(mem_size, 1))
            self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
            
    def forward(self, x):
        if not self.enabled:
            return None
        d_gate = torch.sigmoid(self.gate_proj(x))
        attention = torch.matmul(x, self.m_key.transpose(0, 1))
        attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
        m_gate = torch.matmul(attention, self.m_val)
        m_gate = torch.sigmoid(m_gate)
        return 0.5 * (d_gate + m_gate)

class c_gate(nn.Module):
    def __init__(self, dims, enabled=True):
        super().__init__()
        self.enabled = enabled
        if enabled:
            self.s_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            self.w_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            self.p_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            self.e_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            self.ph_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
            self.integ = Linear(dims*5, dims)
        
    def forward(self, x, features):
        if not self.enabled:
            return None
        s_feat = features.get("spectrogram", x)
        w_feat = features.get("waveform", x)
        p_feat = features.get("pitch", x)
        e_feat = features.get("envelope", x)
        ph_feat = features.get("phase", x)
        s = self.s_gate(x) * s_feat
        w = self.w_gate(x) * w_feat
        p = self.p_gate(x) * p_feat
        e = self.e_gate(x) * e_feat
        ph = self.ph_gate(x) * ph_feat
        comb = torch.cat([s, w, p, e, ph], dim=-1)
        return self.integ(comb)

class mlp_gate(nn.Module):
    def __init__(self, dims, head, enabled=True, one_shot=True):
        super().__init__()
        self.enabled = enabled
        if enabled:
            self.gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())

    def forward(self, x, xa=None, f=None):
        if not self.enabled:
            return None
        return self.gate(x)

class Residual(nn.Module):
    _seen = set()  
    def __init__(self, ctx, dims, head, act, debug: List[str] = [], 
                 tgate=True, mgate=False, cgate=False, mem_size=512, features=None, one_shot=False):
        super().__init__()
        
        self.dims = dims
        self.head = head
        self.ctx = ctx
        self.head_dim = dims // head
        self.features = features
        self.debug = debug
        self.counter = 0
        self.dropout = 0.01
        self.one_shot = one_shot

        self.blend = nn.Parameter(torch.tensor(0.5)) 
        act_fn = get_activation(act)
        self.attn = MultiheadA(dims, head, rotary_emb=True, debug=debug)
        self.curiosity = curiosity(dims, head)

        if not any([tgate, mgate, cgate]):
            self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
        else:
            self.mlp_gate = None
        
        mlp = dims * 4
        self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
        
        self.t_gate = t_gate(dims=dims, num_types=4*2, enabled=tgate)
        self.m_gate = m_gate(dims=dims, mem_size=mem_size, enabled=mgate)
        self.c_gate = c_gate(dims=dims, enabled=cgate)
        self.mlp_gate = mlp_gate(dims=dims, head=head, enabled=not any([tgate, mgate, cgate]), one_shot=True)
        
        self.lna = RMSNorm(dims)
        self.lnb = RMSNorm(dims)
        self.lnc = RMSNorm(dims)

    def forward(self, x, xa=None, mask=None, en=None, layer=None, f=None) -> Tensor:
 
        b = torch.sigmoid(self.blend)
        ax = x + self.attn(self.lna(x), xa=xa, mask=mask, en=en, layer=layer, f=f)[0]
        bx = b * ax + (1 - b) * x
        cx = self.lnb(bx)
        dx = self.mlp(cx)
        ex = self.t_gate(cx) if not None else self.default(self.m_gate(cx), self.mlp_gate(cx))
        fx = x + ex + dx
        gx = self.lnc(fx)
        return gx
            
class OneShot(nn.Module):
    def __init__(self, dims: int, head: int, scale: float = 0.3):
        super().__init__()
        self.head  = head
        self.hdim  = dims // head
        self.scale = scale                      
        self.q_proj = Linear(dims, dims)
        self.k_proj = Linear(dims, dims)

    def forward(self, x: Tensor, guide: Tensor, f=None) -> Tensor | None:
        B, Q, _ = x.shape
        K       = guide.size(1)
        q = self.q_proj(x ).view(B, Q, self.head, self.hdim).transpose(1,2)
        k = self.k_proj(guide).view(B, K, self.head, self.hdim).transpose(1,2)
        bias = (q @ k.transpose(-1, -2)) * self.scale / math.sqrt(self.hdim)
        return bias

class curiosity(nn.Module):
    def __init__(self, d, h, bias=True):
        super().__init__()
        self.h  = h
        self.dh = d // h
        self.qkv = nn.Linear(d, d * 3, bias=bias)
        self.qkv_aux = nn.Linear(d, d * 3, bias=bias)
        self.o  = nn.Linear(d, d, bias=bias)
        self.g  = nn.Parameter(torch.zeros(h))

    def split(self, x):
        b, t, _ = x.shape
        return x.view(b, t, self.h, self.dh).transpose(1, 2)

    def merge(self, x):
        b, h, t, dh = x.shape
        return x.transpose(1, 2).contiguous().view(b, t, h * dh)

    def forward(self, x, xa, mask=None):
        q, k, v   = self.qkv(x).chunk(3, -1)
        qa, ka, va = self.qkv_aux(xa).chunk(3, -1)
        q, k, v   = map(self.split, (q, k, v))
        qa, ka, va = map(self.split, (qa, ka, va))
        dots      = (q @ k.transpose(-2, -1)) / self.dh**0.5
        dots_aux  = (q @ ka.transpose(-2, -1)) / self.dh**0.5
        if mask is not None: dots = dots.masked_fill(mask, -9e15)
        p   = dots.softmax(-1)
        pa  = dots_aux.softmax(-1)
        h_main = p  @ v
        h_aux  = pa @ va
        g = torch.sigmoid(self.g).view(1, -1, 1, 1)
        out = self.merge(h_main * (1 - g) + h_aux * g)
        return self.o(out)

class PositionalEncoding(nn.Module):
    def __init__(self, dims, ctx):
        super(PositionalEncoding, self).__init__()
        self.dims = dims
        self.ctx = ctx
        self.pe = self.get_positional_encoding(max_ctx=ctx)

    def get_positional_encoding(self, max_ctx):
        pe = torch.zeros(max_ctx, self.dims)
        position = torch.arange(0, max_ctx, dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.dims, 2, dtype=torch.float32)
            * (-math.log(10000.0) / self.dims)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        return pe.to(device)

    def forward(self, x):
        ctx = x.size(1)
        pe = self.pe[:, :ctx, :]
        x = x * math.sqrt(self.dims)
        x = x + pe
        return x

class FEncoder(nn.Module):
    def __init__(self, mels, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None, debug=[]):
        super().__init__()
        
        self.head = head
        self.head_dim = dims // head  
        self.dropout = 0.01 
        self.use_rope = use_rope
        self.dims = dims
        self.debug = debug
        act_fn = get_activation(act)
        self.attend_pitch = False

        if self.attend_pitch:
            self.q, self.k, self.v, self.o, self.scale = qkv_init(dims, head)
            self.mlp = nn.Sequential(
                nn.Linear(dims, dims),
                nn.ReLU(),
                nn.Linear(dims, dims),
            )
        else:
            self.q, self.k, self.v, self.o, self.scale = None, None, None, None, None
            self.mlp = None

        self.encoder = nn.Sequential(
            Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
            Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
            Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)

        if use_rope:
            if spec_shape is not None:
                self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
        else:
            self.rope = None
            self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
        self.norm = RMSNorm(dims)

    def apply_rope_to_features(self, x, en=None, f=None, layer="audio"):
        batch, ctx, dims = x.shape
        x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
        freqs = self.rope(ctx, en=en, f=f, layer=layer)
        x = self.rope.apply_rotary(x, freqs)
        x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)

        return x

    def forward(self, x: Tensor, en=None, f=None, layer = None):
        x = self.encoder(x).permute(0, 2, 1)
        if self.use_rope:
            x = self.apply_rope_to_features(x, en=en, f=f, layer=layer)
        else:
            x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)

        if self.mlp is not None:
            x = self.mlp(x)

        if self.attend_pitch:
            xa = en["input_ids"]
            if xa is not None:
                q, k, v = create_qkv(self.q, self.k, self.v, x=xa, xa=x, head=self.head)
                out, _ = calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True)
                out = self.o(out)
                x = x + out

        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = self.norm(x)
        return x

class WEncoder(nn.Module):
    def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False, debug=[], spec_shape=None):
        super().__init__()
        
        self.head = head
        self.head_dim = dims // head
        self.dropout = 0.01
        self.use_rope = use_rope
        self.dims = dims
        self.debug = debug
        act_fn = get_activation(act)
        self.target_length = None
        self.encoder = nn.Sequential(
            Conv1d(input_dims, dims//4, kernel_size=15, stride=4, padding=7), act_fn,
            Conv1d(dims//4, dims//2, kernel_size=7, stride=2, padding=3), act_fn,
            Conv1d(dims//2, dims, kernel_size=5, stride=2, padding=2), act_fn)
            
        if use_rope:
            if spec_shape is not None:
                self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
        else:
            self.rope = None
            self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
        self.norm = RMSNorm(dims)

    def apply_rope_to_features(self, x, en=None, f=None, layer="audio"):
        batch, ctx, dims = x.shape
        x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
        freqs = self.rope(ctx, en=en, f=f, layer=layer)
        x = self.rope.apply_rotary(x, freqs)
        x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
        return x
        
    def forward(self, x: Tensor, en= None, f=None, layer = None):
        x = self.encoder(x).permute(0, 2, 1)
        if self.target_length and x.shape[1] != self.target_length:
            x = F.adaptive_avg_pool1d(x.transpose(1, 2), self.target_length).transpose(1, 2)
        if self.use_rope:
            x = self.apply_rope_to_features(x, en=en, f=f, layer=layer)
        else:
            x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)

        x = self.ln(x)
        print(f"X: {x.shape} {f}") if "encoder" in self.debug else None
        return self.norm(x)

class PEncoder(nn.Module):
    def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=True, debug=[], one_shot=False, spec_shape=None):
        super().__init__()
        
        self.head = head
        self.head_dim = dims // head
        self.dims = dims
        self.dropout = 0.01
        self.use_rope = use_rope
        self.debug = debug
        act_fn = get_activation(act)
        
        self.encoder = nn.Sequential(
            Conv1d(input_dims, dims, kernel_size=7, stride=1, padding=3), act_fn,
            Conv1d(dims, dims, kernel_size=5, stride=1, padding=2), act_fn,
            Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)

        if use_rope:
                self.rope = rotary(dims=dims, head=head, radii=False, debug=[], use_pbias=False, axial=False, spec_shape=spec_shape)
        else:
            self.rope = None
            self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
        
        self.norm = RMSNorm(dims)
        
    def rope_to_feature(self, x, en=None, f="pitch", layer="PEncoder"):
        batch, ctx, dims = x.shape
        x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
        freqs = self.rope(ctx, en=en, f=f, layer=layer)
        x = self.rope.apply_rotary(x, freqs)
        x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
        return x
        
    def forward(self, x: Tensor, en= None, f="pitch", layer="PEncoder"):

        if x.dim() == 2:
            x = x.unsqueeze(0)
        
        x = self.encoder(x).permute(0, 2, 1)
        if self.use_rope:
            x = self.rope_to_feature(x, en=en, f=f, layer=layer)
        else:
            x = x + self.positional(x.shape[1], x.shape[-1], 10000).to(device, dtype)
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = self.norm(x)
        print(f"X: {x.shape} {f}") if "PEncoder" in self.debug else None
        return x

class theBridge(nn.Module):
    def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, 
                debug: List[str], features: List[str], act: str = "gelu"): 
        super(theBridge, self).__init__()
    
        tgate = True
        mgate = False
        cgate = False

        self.debug = debug
        self.counter = 0
        self.dropout = 0.01 
        self.features = features
        self.do_blend = "no_blend" not in self.debug
        self.sequential = "sequential" in self.debug
        self.layer = layer

        self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
        self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
        self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
        self.norm = RMSNorm(dims)
        self.sinusoid_pos = lambda length, dims, max_tscale: sinusoids(length, dims, 10000)
        self.rotary = rotary(dims=dims,  head=head, debug=debug, radii=False)

        with torch.no_grad():
            self.token.weight[0].zero_()
        
        act_fn = get_activation(act)
        if features == ["spectrogram", "waveform", "pitch"]:
            cgate=True
        else:
            cgate = False
    
        self.blockA = nn.ModuleDict()
        self.blockA["waveform"] = nn.ModuleList(
            [WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] + 
            [Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features) 
            for _ in range(layer)] if "waveform" in features else None) 

        for feature_type in ["spectrogram", "aperiodic", "harmonic"]:
            if feature_type in features:
                self.blockA[feature_type] = nn.ModuleList(
                    [FEncoder(mels=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] + 
                    [Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features) for _ in range(layer)] if feature_type in features else None)
            else:
                self.blockA[feature_type] = None

        for feature_type in ["pitch", "phase"]:
            if feature_type in features:
                self.blockA[feature_type] = nn.ModuleList(
                    [PEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act_fn)] + 
                    [Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features) for _ in range(layer)] if feature_type in features else None)
            else:
                self.blockA[feature_type] = None

        self.blockB = nn.ModuleList([
            Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features)
            for _ in range(layer)])

        self.modal = nn.ModuleList([
            Residual(ctx=ctx, dims=dims, head=head, act=act_fn, tgate=tgate, mgate=mgate, cgate=cgate, debug=debug, features=features)
            for _ in range(layer)]) 

        mask = torch.tril(torch.ones(ctx, ctx), diagonal=0) 
        self.register_buffer("mask", mask, persistent=False)

        self.norm = RMSNorm(dims)

    def forward(self, x, xa, en, f, sequential=False) -> Tensor:
        mask = self.mask[:x.shape[1], :x.shape[1]] 
        x = self.token(x.long()) + self.positional[:x.shape[1]]

        out = {}
        out["input_ids"] = x
        out.update(en)

        for b in chain(self.blockA[f] or []):
            xa = b(x=xa, en=out, f=f, layer="en")

        for b in chain(self.blockB or []):
            x = b(x=x, xa=None, mask=mask, en=out, f=f, layer="dec")
            y = b(x, xa=xa, mask=None, en=out, f=f, layer="cross")
            if sequential:
                x = y
            else:
                a = torch.sigmoid(self.blend)
                x = a * y + (1 - a) * x 
        for b in self.modal:
            xc = b(x=torch.cat([x, xa], dim=1), xa=None, mask=None, en=out, f=f, layer="modal")    
            xm = b(x=xc[:, :x.shape[1]], xa=xc[:, x.shape[1]:], mask=None, en=out, f=f, layer="modal")
            if sequential:
                x = xm
            else:
                a = torch.sigmoid(self.blend)
                x = a * x + (1 - a) * xm

        if self.counter < 1 and "encoder" in self.debug:      
                shapes = {k: v.shape for k, v in en.items()}
                print(f"Step {self.counter}: mode: {list(en.keys()) }: shapes: {shapes}")
        self.counter += 1

        x = self.norm(x)
        x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()

        return x
   
class Echo(nn.Module):
    def __init__(self, param: Dimensions):
        super().__init__()
        self.param = param
        
        self.processor = theBridge(
            vocab=param.vocab,
            mels=param.mels,
            ctx=param.ctx,
            dims=param.dims,
            head=param.head,
            layer=param.layer,
            features=param.features,
            act=param.act,
            debug=param.debug,
            )       
        
    def forward(self,
        labels=None,
        input_ids=None,
        waveform: Optional[torch.Tensor]=None,
        spectrogram: Optional[torch.Tensor]=None,
        pitch: Optional[torch.Tensor]=None,
        f0: Optional[torch.Tensor]=None,
        f0t: Optional[torch.Tensor]=None,
        harmonic: Optional[torch.Tensor]=None,
        aperiodic: Optional[torch.Tensor]=None,
        phase: Optional[torch.Tensor]=None,
        ) -> Dict[str, Optional[torch.Tensor]]:

        en= TensorDict(batch_size=[1], device=self.device, dtype=self.dtype)

        en= {}
        if f0 is not None:
            en["f0"] = f0
        if f0t is not None:
            en["f0t"] = f0t
        if harmonic is not None:
            en["harmonic"] = harmonic
        if aperiodic is not None:
            en["aperiodic"] = aperiodic
        if phase is not None:
            en["phase"] = phase
        if pitch is not None:
            en["pitch"] = pitch
        if waveform is not None:
            en["waveform"] = waveform
        if spectrogram is not None:
            en["spectrogram"] = spectrogram

        x = input_ids
        for f, xa in en.items():

            logits = self.processor(x, xa, en, f)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(
                logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
        
        return {"logits": logits, "loss": loss} 

    @property
    def device(self):
        return next(self.parameters()).device
    @property
    def dtype(self):
        return next(self.parameters()).dtype

    def _init_weights(self, module):
        std = 0.02
        self.init_counts = {
            "Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
            "Conv2d": 0, "theBridge": 0, "Echo": 0, 
            "Residual": 0, "MultiheadA": 0, 
            "MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
            "WEncoder": 0, "PEncoder": 0}

        for name, module in self.named_modules():
            if isinstance(module, RMSNorm):
                nn.init.ones_(module.weight)
                self.init_counts["RMSNorm"] += 1
            elif isinstance(module, nn.Linear):
                if module.weight is not None:
                    nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Linear"] += 1
            elif isinstance(module, Conv1d):
                nn.init.normal_(module.weight, mean=0.0, std=std)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Conv1d"] += 1
            elif isinstance(module, Conv2d):
                nn.init.normal_(module.weight, mean=0.0, std=std)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Conv2d"] += 1
            elif isinstance(module, MultiheadA):
                self.init_counts["MultiheadA"] += 1
            elif isinstance(module, Residual):
                self.init_counts["Residual"] += 1
            elif isinstance(module, PEncoder):
                self.init_counts["PEncoder"] += 1
            elif isinstance(module, FEncoder):
                self.init_counts["FEncoder"] += 1
            elif isinstance(module, WEncoder):
                self.init_counts["WEncoder"] += 1
            elif isinstance(module, theBridge):
                self.init_counts["theBridge"] += 1
            elif isinstance(module, Echo):
                self.init_counts["Echo"] += 1

    def init_weights(self):
        print("Initializing model weights...")
        self.apply(self._init_weights)
        print("Initialization summary:")
        for module_type, count in self.init_counts.items():
            if count > 0:
                print(f"{module_type}: {count}")

    def generate(self, input_ids=None, spectrogram=None, waveform=None, pitch=None, f0=None, 
        envelope=None, phase=None, tokenizer=None, max_length=128, min_length=1, device=None, **kwargs):
        if device is None:
            device = self.device
        pad_token_id = getattr(tokenizer, "pad_token_id", 0)
        bos_token_id = getattr(tokenizer, "bos_token_id", 1)
        eos_token_id = getattr(tokenizer, "eos_token_id", 2)
        batch_size = 1
        for x in [spectrogram, waveform, pitch, f0, envelope, phase]:
            if x is not None:
                batch_size = x.shape[0]
                break
        ids = torch.full((batch_size, 1), bos_token_id, dtype=torch.long, device=device)
        feature = {}
        if spectrogram is not None:
            feature["spectrogram"] = spectrogram
        if waveform is not None:
            feature["waveform"] = waveform
        if pitch is not None:
            feature["pitch"] = pitch
        if envelope is not None:
            feature["envelope"] = envelope
        if phase is not None:
            feature["phase"] = phase
        if f0 is not None:
            feature["f0"] = f0
        
        for i in range(max_length - 1):
            with torch.no_grad():
                feature["input_ids"] = ids
                logits = self.SpeechTransformer(feature)
            next_token_logits = logits[:, -1, :]
            if i < min_length:
                next_token_logits[:, eos_token_id] = 0
            next_tokens = torch.argmax(next_token_logits, dim=-1, keepdim=True)
            ids = torch.cat([ids, next_tokens], dim=1)
            if (next_tokens == eos_token_id).all() and i >= min_length:
                break
        return ids

    @property
    def config(self):
        class Config:
            pad_token_id = getattr(self.param, "pad_token_id", 0)
            bos_token_id = getattr(self.param, "bos_token_id", 1)
            eos_token_id = getattr(self.param, "eos_token_id", 2)
            def to_json_string(self):
                import json
                return json.dumps({
                    "pad_token_id": self.pad_token_id,
                    "bos_token_id": self.bos_token_id,
                    "eos_token_id": self.eos_token_id,
                })
        return Config()

def main():
    token = ""
    log_dir = os.path.join('./output/logs', datetime.now().strftime('%m-%d_%H_%M_%S'))
    os.makedirs(log_dir, exist_ok=True)
    tokenizer = setup_tokenizer("./")

    sanity_check = False
    streaming = False
    load_saved = False
    save_dataset = False
    cache_dir = None
    extract_args = None    

    extract_args = {
        "waveform": False,
        "spec": True,
        "f0": False,
        "f0t": False,
        "pitch": True,
        "harmonics": False,
        "aperiodics": False,
        "phase_mod": False,
        "crepe": False,        
        "sample_rate": 16000,
        "hop_length": 256,
        "mode": "mean",
        "debug": False,
    }

    param = Dimensions(
        vocab=40000,
        mels=128,
        ctx=2048,
        dims=512,
        head=4,
        layer=4,
        act="swish",
        debug={"encoder"},
        features = ["spectrogram", "pitch"],
        )

    train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=sanity_check, sample_rate=16000, streaming=streaming,
        load_saved=load_saved, save_dataset=save_dataset, cache_dir=cache_dir, extract_args=extract_args, max_ctx=param.ctx)

    model = Echo(param).to('cuda')
    print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
    print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
    
    from functools import partial
    metrics_fn = partial(compute_metrics, 
    print_pred=True, 
    num_samples=1, 
    tokenizer=tokenizer, model=model)

    if sanity_check:
        training_args = Seq2SeqTrainingArguments(
            output_dir=log_dir,
            per_device_train_batch_size=1,
            per_device_eval_batch_size=1,
            max_steps=10,
            eval_steps=5,
            save_steps=0,
            warmup_steps=0,
            logging_steps=1,
            logging_dir=log_dir,
            eval_strategy="steps",
            save_strategy="no",
            logging_strategy="no",
            report_to=["tensorboard"],
            push_to_hub=False,
            save_total_limit=1,
            label_names=["labels"],
            save_safetensors=False,
            eval_on_start=True,
            batch_eval_metrics=False,
            disable_tqdm=False,
            include_tokens_per_second=True,
            include_num_input_tokens_seen=True,
            learning_rate=1e-7,
            weight_decay=0.01,
        )
    else:
        training_args = Seq2SeqTrainingArguments(
            output_dir=log_dir,
            per_device_train_batch_size=1,
            per_device_eval_batch_size=1,
            max_steps=1000,
            eval_steps=100,
            save_steps=1000,
            warmup_steps=100,
            logging_steps=10,
            logging_dir=log_dir,
            logging_strategy="steps",
            eval_strategy="steps",
            save_strategy="no",
            report_to=["tensorboard"],
            push_to_hub=False,
            save_total_limit=1,
            label_names=["labels"],
            save_safetensors=False,
            eval_on_start=True,
            batch_eval_metrics=False,
            disable_tqdm=False,
            include_tokens_per_second=True,
            include_num_input_tokens_seen=True,
            learning_rate=0.00025,
            weight_decay=0.025,
        )

    optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999), 
    amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)

    trainer = Seq2SeqTrainer(
        args=training_args,
        model=model,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        data_collator=DataCollator(tokenizer=tokenizer),
        preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        compute_metrics=metrics_fn,
        optimizers=(optimizer, scheduler)
    )

    model.init_weights()
    trainer.train()
if __name__ == "__main__":

    main()