File size: 20,985 Bytes
bfada3c
a479bac
 
 
 
b62df1e
a479bac
edcaa5d
b62df1e
6296a84
a479bac
 
 
 
 
6296a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79996fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a479bac
 
6296a84
a479bac
 
 
 
6296a84
a479bac
 
 
6296a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a479bac
 
 
 
 
 
6296a84
b62df1e
6296a84
edcaa5d
 
 
 
 
 
6296a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a479bac
79996fa
446e362
14b7fc4
a479bac
b62df1e
bfada3c
b62df1e
79996fa
 
 
 
 
6296a84
b62df1e
6296a84
b62df1e
 
6296a84
b62df1e
 
6296a84
79996fa
b62df1e
6296a84
79996fa
bfada3c
b62df1e
 
6296a84
bcea466
79996fa
 
 
 
bcea466
79996fa
 
 
 
bcea466
79996fa
 
b62df1e
 
 
 
d7c7a93
b62df1e
 
6296a84
b62df1e
d7c7a93
79996fa
b62df1e
 
 
 
 
 
 
6296a84
a479bac
14b7fc4
6296a84
b62df1e
6296a84
79996fa
d7c7a93
b62df1e
 
6296a84
 
 
 
b62df1e
d7c7a93
6296a84
 
a479bac
6296a84
 
 
 
 
 
9e76dcc
6296a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4487bd6
6296a84
4487bd6
14b7fc4
6296a84
b62df1e
6296a84
79996fa
 
9e76dcc
d7c7a93
6296a84
b62df1e
6296a84
b62df1e
 
edcaa5d
6296a84
 
 
 
79996fa
a479bac
 
6296a84
 
 
 
 
14b7fc4
6296a84
 
 
b62df1e
 
 
 
 
 
6296a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b7fc4
7cc3b2c
b62df1e
 
 
9e76dcc
7cc3b2c
a479bac
 
 
 
6296a84
a479bac
 
 
 
6296a84
a479bac
edcaa5d
a479bac
d7c7a93
b62df1e
a479bac
6296a84
79996fa
d7c7a93
 
 
 
 
 
 
6296a84
 
d7c7a93
79996fa
a479bac
 
b62df1e
79996fa
a479bac
 
 
 
 
6296a84
a479bac
b62df1e
a479bac
 
b62df1e
 
 
a479bac
 
 
 
 
 
b62df1e
7cc3b2c
a479bac
 
 
b62df1e
7cc3b2c
a479bac
 
 
b62df1e
9e76dcc
 
a479bac
 
 
 
 
 
 
 
fd4647c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

import warnings
import logging
from itertools import chain
import torch
from torch import nn, Tensor, einsum
import numpy as np
from dataclasses import dataclass
from einops import rearrange

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)

def scaled_relu(x, sequence_length):
    relu_output = torch.relu(x)
    return relu_output / sequence_length

def taylor_softmax(x, order=2):
    tapprox = 1.0
    for i in range(1, order + 1):
        factorial_i = torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
        tapprox += x**i / factorial_i
    return tapprox / torch.sum(tapprox, dim=-1, keepdim=True)

def there_is_a(a):
    return a is not None

def AorB(a, b):
    return a if there_is_a(a) else b

def sinusoids(ctx, dims, max_tscale=10000):
    assert dims % 2 == 0
    pos = torch.log(torch.tensor(float(max_tscale))) / (dims // 2 - 1)
    tscales = torch.exp(-pos * torch.arange(dims // 2, device=device, dtype=torch.float32))
    scaled = torch.arange(ctx, device=device, dtype=torch.float32).unsqueeze(1) * tscales.unsqueeze(0)
    position = torch.cat([torch.sin(scaled), torch.cos(scaled)], dim=1) 
    positional_embedding = nn.Parameter(position, requires_grad=True)
    return positional_embedding

def get_activation(act: str) -> nn.Module:
    act_map = {
        "gelu": nn.GELU(), 
        "relu": nn.ReLU(), 
        "sigmoid": nn.Sigmoid(), 
        "tanh": nn.Tanh(), 
        "swish": nn.SiLU(), 
        "tanhshrink": nn.Tanhshrink(), 
        "softplus": nn.Softplus(), 
        "softshrink": nn.Softshrink(), 
        "leaky_relu": nn.LeakyReLU(), 
        "elu": nn.ELU()
    }
    return act_map.get(act, nn.GELU())

@dataclass
class Dimensions:
    tokens: int
    mels: int
    ctx: int
    dims: int
    head: int
    head_dim: int
    layer: int
    act: str

def vectorized_taylor_sine(x, order=5):
    original_shape = x.shape
    x = x.flatten(0, -2)
    exponents = torch.arange(1, order + 1, 2, device=x.device, dtype=torch.float32)
    x_powers = x.unsqueeze(-1) ** exponents
    factorials = torch.exp(torch.lgamma(exponents + 1))
    signs = (-1)**(torch.arange(0, len(exponents), device=x.device, dtype=torch.float32))
    terms = signs * x_powers / factorials
    result = terms.sum(dim=-1)
    return result.view(original_shape)

def vectorized_taylor_cosine(x, order=5):
    original_shape = x.shape
    x = x.flatten(0, -2)
    exponents = torch.arange(0, order + 1, 2, device=x.device, dtype=torch.float32)
    x_powers = x.unsqueeze(-1) ** exponents
    factorials = torch.exp(torch.lgamma(exponents + 1))
    signs = (-1)**(torch.arange(0, len(exponents), device=x.device, dtype=torch.float32))
    terms = signs * x_powers / factorials
    result = terms.sum(dim=-1)
    return result.view(original_shape)

class rotary(nn.Module):
    def __init__(self, dims, head):
        super(rotary, self).__init__()
        self.dims = dims
        self.head = head
        self.head_dim = dims // head
        self.taylor_order = 10

        self.theta = nn.Parameter((torch.tensor(360000, device=device, dtype=dtype)), requires_grad=False)  
        self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)

    def _compute_freqs_base(self):
        mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
        return 200 * mel_scale / 1000 

    def forward(self, x) -> torch.Tensor:
        positions = (torch.arange(0, x.shape[2], device=x.device))
        freqs = (self.theta / 220.0) * self.freqs_base
        freqs = positions[:, None] * freqs 
        freqs_rescaled = (freqs + torch.pi) % (2 * torch.pi) - torch.pi 

        with torch.autocast(device_type="cuda", enabled=False):
            cos = vectorized_taylor_cosine(freqs_rescaled, order=self.taylor_order)
            sin = vectorized_taylor_sine(freqs_rescaled, order=self.taylor_order)
            rotary_dim = cos.shape[-1] 
            x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
            x_embed = (x_rot * cos) + (rotate_half(x_rot) * sin)
            x_embed = torch.cat([x_embed, x_pass], dim=-1)
            return x_embed.type_as(x)

def taylor_sine(x, order=5):
    result = torch.zeros_like(x)
    for i in range(order + 1):
        if i % 2 == 1:  
            term = x**i / torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
            if (i // 2) % 2 == 1: 
                result -= term
            else:
                result += term
    return result

def taylor_cosine(x, order=5):
    result = torch.zeros_like(x)
    for i in range(order + 1):
        if i % 2 == 0:  
            term = x**i / torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
            if (i // 2) % 2 == 1: 
                result -= term
            else:
                result += term
    return result

class rotarya(nn.Module):
    def __init__(self, dims, head):
        super(rotary, self).__init__()
        self.dims = dims
        self.head = head
        self.head_dim = dims // head
        self.taylor_order = 5

        self.theta = nn.Parameter((torch.tensor(1600, device=device, dtype=dtype)), requires_grad=False)  
        self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)

    def _compute_freqs_base(self):
        mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
        return 200 * mel_scale / 1000 

    def forward(self, x) -> torch.Tensor:

        positions = (torch.arange(0, x.shape[2], device=x.device))
        freqs = (self.theta / 220.0) * self.freqs_base
        freqs = positions[:, None] * freqs 
        freqs = (freqs + torch.pi) % (2 * torch.pi) - torch.pi
        with torch.autocast(device_type="cuda", enabled=False):
            cos = taylor_cosine(freqs, order=self.taylor_order)
            sin = taylor_sine(freqs, order=self.taylor_order)
            rotary_dim = cos.shape[-1] 
            x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
            x_embed = (x_rot * cos) + (rotate_half(x_rot) * sin)
            x_embed = torch.cat([x_embed, x_pass], dim=-1)
            return x_embed.type_as(x) 

def rotate_half(x):
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

# class rotary(nn.Module):
#     def __init__(self, dims, head):
#         super(rotary, self).__init__()
#         self.dims = dims
#         self.head = head
#         self.head_dim = dims // head

#         self.theta = nn.Parameter((torch.tensor(1600, device=device, dtype=dtype)), requires_grad=False)  
#         # self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)

#     def _compute_freqs_base(self):
#         mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
#         return 200 * mel_scale / 1000 

#     def forward(self, x) -> Tensor:
#         positions = (torch.arange(0, x.shape[2], device=x.device))
#         freqs = (self.theta / 220.0) * self._compute_freqs_base()
#         freqs = positions[:, None] * freqs
        
#         with torch.autocast(device_type="cuda", enabled=False):
#             freqs = torch.polar(torch.ones_like(freqs), freqs)
#             x1 = x[..., :freqs.shape[-1]*2]
#             x2 = x[..., freqs.shape[-1]*2:]
#             orig_shape = x1.shape
#             x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
#             x1 = torch.view_as_complex(x1) * freqs
#             x1 = torch.view_as_real(x1).flatten(-2)
#             x1 = x1.view(orig_shape)
#             return torch.cat([x1.type_as(x), x2], dim=-1)

class attentiona(nn.Module):
    def __init__(self, dims: int, head: int):
        super().__init__()
        self.head = head
        self.dims = dims
        self.head_dim = dims // head

        self.pad_token = 0
        self.zmin = 1e-6
        self.zmax = 1e-5     
        self.zero = nn.Parameter(torch.tensor(1e-4, device=device, dtype=dtype), requires_grad=False)

        self.q = nn.Linear(dims, dims) 
        self.kv = nn.Linear(dims, dims * 2, bias=False)
        self.out = nn.Linear(dims, dims)

        self.lna = nn.LayerNorm(dims) 
        self.lnb = nn.LayerNorm(dims // head) 
        self.rope = rotary(dims, head) 

    def forward(self, x, xa = None, mask = None,  positions = None):
        zero = self.zero

        q = self.q(x)
        k, v = self.kv(self.lna(x if xa is None else xa)).chunk(2, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b c (h d) -> b h c d', h = self.head), (q, k, v))
        scale = q.shape[-1] ** -0.5

        qk = einsum('b h k d, b h q d -> b h k q', self.lnb(q), self.lnb(k)) * scale 

        scale = torch.ones_like(k[:, :, :, 0])
        zero = torch.clamp(F.softplus(zero), 1e-6, 1e-5)
        scale[k[:, :, :, 0].float() == 0] = zero
   
        if there_is_a(mask):
            i, j = qk.shape[-2:]
            mask = torch.ones(i, j, device = q.device, dtype = torch.bool).triu(j - i + 1)
            qk = qk.masked_fill(mask,  -torch.finfo(qk.dtype).max) * scale.unsqueeze(-2).expand(qk.shape)
            qk = F.sigmoid(qk)

        qk = qk * scale.unsqueeze(-2)
        qk = taylor_softmax(qk, order=2)

        wv = einsum('b h k q, b h q d -> b h k d', qk, v) 
        wv = rearrange(wv, 'b h c d -> b c (h d)')
        out = self.out(wv)
        return out

class tgate(nn.Module):
    def __init__(self, dims, num_types=1):
        super().__init__()
        self.gates = nn.ModuleList([nn.Sequential(nn.Linear(dims, dims), nn.Sigmoid()) for _ in range(num_types)])
        self.classifier = nn.Sequential(nn.Linear(dims, num_types), nn.Softmax(dim=-1))
    def forward(self, x):
        types = self.classifier(x)
        gates = torch.stack([gate(x) for gate in self.gates], dim=-1)
        cgate = torch.sum(gates * types.unsqueeze(2), dim=-1)
        return cgate

class residual(nn.Module): 
    def __init__(self, dims: int, head: int, layer = 2, act = "silu"):
        super().__init__()

        self.lna = nn.LayerNorm(dims, bias=False)       
        self.atta = attentiona(dims, head)
        self.dsl = skip_layer(dims, head, layer=2)
   
        self.tgate = tgate(dims, num_types=1)
        self.mlp = nn.Sequential(nn.Linear(dims, dims*4), get_activation(act), nn.Linear(dims*4, dims))

    def forward(self, x: Tensor, xa = None, mask = None, positions=None):
        # log = {}
        x = x + self.atta(self.lna(x), xa=xa, mask=mask)
        x, _ =  self.dsl(self.lna(x), xa=xa, mask=mask) # _ outputs logs for jumps
        x = x + self.tgate(x)
        x = x + self.mlp(self.lna(x)) 
        # print(results['jumps'])
        # log['jumps'] = l
        return x
  
class skip_layer(nn.Module):
    def __init__(self, dims, head, layer, threshold=0.1):
        super().__init__()
        self.layers = nn.ModuleList()
        self.layer = layer

        self.threshold = threshold
        self.dims = dims
        self.head = head
        self.head_dim = dims // head

        self.attention_module = attentiona(dims, head)
        self.node_predictors = nn.ModuleList([
            nn.Sequential(
                nn.LayerNorm(dims),
                nn.Linear(dims, 1),
                nn.Sigmoid()
            ) for _ in range(layer)
        ])
        
        for i in range(layer):
            self.layers.append(nn.ModuleDict({
                'ln': nn.LayerNorm(dims),
                'gate': nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid()),
                'adapter': nn.Linear(dims, dims) if i % 2 == 0 else None
            }))
        
        self.policy_net = nn.Sequential(
            nn.Linear(dims, 128),
            nn.ReLU(),
            nn.Linear(128, 3))
        
        self.jump_weights = nn.Parameter(torch.tensor([0.1, 0.05, 0.01]))
        
        n_mlp = dims * 4
        self.mlp_gate = nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid())
        self.mlp = nn.Sequential(nn.Linear(dims, n_mlp), nn.GELU(), nn.Linear(n_mlp, dims))
        self.mlp_ln =nn.LayerNorm(dims)
        self.working_memory = nn.Parameter(torch.zeros(1, 1, dims))
        self.memory_gate = nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid())

    def _calculate_shared_attention(self, x, mask=None):
        return self.attention_module(x, xa=x, mask=None)

    def predict_node_importance(self, x, layer_idx):
        importance = self.node_predictors[layer_idx](x)
        return (importance > self.threshold).float()
    
    def forward(self, x, xa=None, mask=None):
        batch, ctx = x.shape[:2]

        working_memory = self.working_memory.expand(batch, -1, -1)
        original_x = x
        pooled_representation = x.mean(dim=1)
        policy_logits = self.policy_net(pooled_representation)
        policy = F.softmax(policy_logits, dim=-1)
        
        jump_history = []
        i = 0
        while i < self.layer:
            layer = self.layers[i]
            node_importance = self.predict_node_importance(x, i)
            if node_importance.mean() < 0.2 and i > 0:
                i += 1
                jump_history.append(i)
                continue
                
            norm_x = layer['ln'](x)
            importance_mask_base = node_importance.unsqueeze(1).contiguous()
            combined_custom_mask = None
            if mask is None:
                combined_custom_mask = importance_mask_base 
            else:
                combined_custom_mask = mask.contiguous() * importance_mask_base
                
            if node_importance.mean() > 0.3:
                attn_output = self._calculate_shared_attention(norm_x, mask=combined_custom_mask.contiguous())
                if layer['adapter'] is not None:
                    attn_output = layer['adapter'](attn_output)
                
                gate_value = layer['gate'](norm_x)
                x = x + gate_value * attn_output
                memory_gate = self.memory_gate(x)
                working_memory = memory_gate * working_memory + (1 - memory_gate) * x.mean(dim=1, keepdim=True)
            
            jump_prob = policy[:, 1] if i < self.layer - 1 else torch.zeros_like(policy[:, 1])
            should_jump = (torch.rand_like(jump_prob) < jump_prob).any()
            
            if should_jump:
                jump_length = torch.multinomial(policy, 1)[:, 0].max().item() + 1
                i_next = min(i + jump_length, self.layer - 1)
                skip_weight = self.jump_weights[min(jump_length-1, 2)]
                x = x + skip_weight * original_x + (1-skip_weight) * working_memory
                i = i_next
                jump_history.append(i)
            else:
                i += 1
        
        mlp_importance = self.mlp_gate(x)
        mlp_output = self.mlp(self.mlp_ln(x))
        x = x + mlp_importance * mlp_output
        return x, {'jumps': jump_history}
        
class processor(nn.Module):
    def __init__(self, tokens, mels, ctx, dims, head, head_dim, layer, act): 
        super(processor, self).__init__()

        act_fn = get_activation(act)   
        self.ln = nn.LayerNorm(dims)        
        self.token = nn.Embedding(tokens, dims)
        self.audio = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)     

        self.positions = nn.Parameter(torch.empty(ctx, dims), requires_grad=True)
        self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
     
        self.encoder = nn.Sequential(
            nn.Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
            nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
            nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)

        modal = False
        self.block = nn.ModuleList([residual(dims, head, layer, act_fn) for _ in range(layer)]) if modal else None

        self.res = residual(dims, head, layer, act_fn)
        mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)  
        self.register_buffer("mask", mask, persistent=False)

    def init_memory(self, batch):
        return torch.zeros(batch, 1, self.dims).to(next(self.parameters()).device)
    
    def update_memory(self, x, working_memory):
        return (x + working_memory) / 2 

    def forward(self, x, xa, enc=None, sequential=False, modal=False, blend=False, kv_cache=None) -> Tensor:    

        mask = self.mask[:x.shape[1], :x.shape[1]]
        offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
        x = (self.token(x.long()) + self.positions[offset : offset + x.shape[-1]])

        xa = self.encoder(xa).permute(0, 2, 1)
        xa = xa + self.audio(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)

        xa = self.res(xa, None, None)
        x  = self.res(x, None, mask)
        x  = self.res(x, xa, None)

        if blend:
            if sequential:
                y = x
            else:
                a = torch.sigmoid(self.blend)
                x = a * x + (1 - a) * y

        if modal:
            for block in chain(self.block or []):
                xm = block(torch.cat([x, xa], dim=1), mask=mask) if modal else None    
                x  = block(xm[:, :x.shape[1]], xm[:, x.shape[1]:], mask=None) if modal else x
                if blend:
                    if sequential:
                        y = x
                    else:
                        a = torch.sigmoid(self.blend)
                        x = a * x + (1 - a) * y

        x = nn.functional.dropout(x, p=0.001, training=self.training)
        x = self.ln(x)        
        x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
        return x 

class Model(nn.Module):
    def __init__(self, param: Dimensions):
        super().__init__()
        self.param = param
        self.processor = processor(
            tokens=param.tokens,
            mels=param.mels,
            ctx=param.ctx,
            dims=param.dims,
            head=param.head,
            head_dim=param.head_dim,
            layer=param.layer,
            act=param.act)       
        
    def forward(self, labels=None, input_ids=None, pitch=None, pitch_tokens=None, spectrogram=None, waveform=None):

        x = input_ids
        xa = AorB(pitch, spectrogram) 
 
        enc = {}
        if spectrogram is not None:
            enc["spectrogram"] = spectrogram
        if waveform is not None:
            enc["waveform"] = waveform
        if pitch is not None:
            enc["pitch"] = pitch
        if pitch_tokens is not None:
            enc["ptokens"] = pitch_tokens

        logits = self.processor(x, xa, enc)
        loss = None
        if labels is not None:
            loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)

        return {"logits": logits, "loss": loss} 

    def _init_weights(self, module):
        self.init_counts = {
            "Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
            "Conv2d": 0, "processor": 0, "attentiona": 0, "Residual": 0}
        for name, module in self.named_modules():
            if isinstance(module, nn.RMSNorm):
                nn.init.ones_(module.weight)
                self.init_counts["RMSNorm"] += 1
            if isinstance(module, nn.LayerNorm):
                nn.init.ones_(module.weight)
                self.init_counts["LayerNorm"] += 1                
            elif isinstance(module, nn.Linear):
                if module.weight is not None:
                    nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Linear"] += 1
            elif isinstance(module, nn.Conv1d):
                nn.init.normal_(module.weight, mean=0.0, std=0.02)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Conv1d"] += 1
            elif isinstance(module, nn.Conv2d):
                nn.init.normal_(module.weight, mean=0.0, std=0.02)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
                self.init_counts["Conv2d"] += 1
            elif isinstance(module, residual):
                self.init_counts["Residual"] += 1
            elif isinstance(module, processor):
                self.init_counts["processor"] += 1

    def init_weights(self):
        print("Initializing model weights...")
        self.apply(self._init_weights)
        print("Initialization summary:")
        for module_type, count in self.init_counts.items():
            if count > 0:
                print(f"{module_type}: {count}")