asr-model / model_simple.py
Sin2pi's picture
Update model_simple.py
6296a84 verified
import warnings
import logging
from itertools import chain
import torch
from torch import nn, Tensor, einsum
import numpy as np
from dataclasses import dataclass
from einops import rearrange
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
def scaled_relu(x, sequence_length):
relu_output = torch.relu(x)
return relu_output / sequence_length
def taylor_softmax(x, order=2):
tapprox = 1.0
for i in range(1, order + 1):
factorial_i = torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
tapprox += x**i / factorial_i
return tapprox / torch.sum(tapprox, dim=-1, keepdim=True)
def there_is_a(a):
return a is not None
def AorB(a, b):
return a if there_is_a(a) else b
def sinusoids(ctx, dims, max_tscale=10000):
assert dims % 2 == 0
pos = torch.log(torch.tensor(float(max_tscale))) / (dims // 2 - 1)
tscales = torch.exp(-pos * torch.arange(dims // 2, device=device, dtype=torch.float32))
scaled = torch.arange(ctx, device=device, dtype=torch.float32).unsqueeze(1) * tscales.unsqueeze(0)
position = torch.cat([torch.sin(scaled), torch.cos(scaled)], dim=1)
positional_embedding = nn.Parameter(position, requires_grad=True)
return positional_embedding
def get_activation(act: str) -> nn.Module:
act_map = {
"gelu": nn.GELU(),
"relu": nn.ReLU(),
"sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(),
"swish": nn.SiLU(),
"tanhshrink": nn.Tanhshrink(),
"softplus": nn.Softplus(),
"softshrink": nn.Softshrink(),
"leaky_relu": nn.LeakyReLU(),
"elu": nn.ELU()
}
return act_map.get(act, nn.GELU())
@dataclass
class Dimensions:
tokens: int
mels: int
ctx: int
dims: int
head: int
head_dim: int
layer: int
act: str
def vectorized_taylor_sine(x, order=5):
original_shape = x.shape
x = x.flatten(0, -2)
exponents = torch.arange(1, order + 1, 2, device=x.device, dtype=torch.float32)
x_powers = x.unsqueeze(-1) ** exponents
factorials = torch.exp(torch.lgamma(exponents + 1))
signs = (-1)**(torch.arange(0, len(exponents), device=x.device, dtype=torch.float32))
terms = signs * x_powers / factorials
result = terms.sum(dim=-1)
return result.view(original_shape)
def vectorized_taylor_cosine(x, order=5):
original_shape = x.shape
x = x.flatten(0, -2)
exponents = torch.arange(0, order + 1, 2, device=x.device, dtype=torch.float32)
x_powers = x.unsqueeze(-1) ** exponents
factorials = torch.exp(torch.lgamma(exponents + 1))
signs = (-1)**(torch.arange(0, len(exponents), device=x.device, dtype=torch.float32))
terms = signs * x_powers / factorials
result = terms.sum(dim=-1)
return result.view(original_shape)
class rotary(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.taylor_order = 10
self.theta = nn.Parameter((torch.tensor(360000, device=device, dtype=dtype)), requires_grad=False)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x) -> torch.Tensor:
positions = (torch.arange(0, x.shape[2], device=x.device))
freqs = (self.theta / 220.0) * self.freqs_base
freqs = positions[:, None] * freqs
freqs_rescaled = (freqs + torch.pi) % (2 * torch.pi) - torch.pi
with torch.autocast(device_type="cuda", enabled=False):
cos = vectorized_taylor_cosine(freqs_rescaled, order=self.taylor_order)
sin = vectorized_taylor_sine(freqs_rescaled, order=self.taylor_order)
rotary_dim = cos.shape[-1]
x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
x_embed = (x_rot * cos) + (rotate_half(x_rot) * sin)
x_embed = torch.cat([x_embed, x_pass], dim=-1)
return x_embed.type_as(x)
def taylor_sine(x, order=5):
result = torch.zeros_like(x)
for i in range(order + 1):
if i % 2 == 1:
term = x**i / torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
if (i // 2) % 2 == 1:
result -= term
else:
result += term
return result
def taylor_cosine(x, order=5):
result = torch.zeros_like(x)
for i in range(order + 1):
if i % 2 == 0:
term = x**i / torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
if (i // 2) % 2 == 1:
result -= term
else:
result += term
return result
class rotarya(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.taylor_order = 5
self.theta = nn.Parameter((torch.tensor(1600, device=device, dtype=dtype)), requires_grad=False)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x) -> torch.Tensor:
positions = (torch.arange(0, x.shape[2], device=x.device))
freqs = (self.theta / 220.0) * self.freqs_base
freqs = positions[:, None] * freqs
freqs = (freqs + torch.pi) % (2 * torch.pi) - torch.pi
with torch.autocast(device_type="cuda", enabled=False):
cos = taylor_cosine(freqs, order=self.taylor_order)
sin = taylor_sine(freqs, order=self.taylor_order)
rotary_dim = cos.shape[-1]
x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
x_embed = (x_rot * cos) + (rotate_half(x_rot) * sin)
x_embed = torch.cat([x_embed, x_pass], dim=-1)
return x_embed.type_as(x)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# class rotary(nn.Module):
# def __init__(self, dims, head):
# super(rotary, self).__init__()
# self.dims = dims
# self.head = head
# self.head_dim = dims // head
# self.theta = nn.Parameter((torch.tensor(1600, device=device, dtype=dtype)), requires_grad=False)
# # self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
# def _compute_freqs_base(self):
# mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
# return 200 * mel_scale / 1000
# def forward(self, x) -> Tensor:
# positions = (torch.arange(0, x.shape[2], device=x.device))
# freqs = (self.theta / 220.0) * self._compute_freqs_base()
# freqs = positions[:, None] * freqs
# with torch.autocast(device_type="cuda", enabled=False):
# freqs = torch.polar(torch.ones_like(freqs), freqs)
# x1 = x[..., :freqs.shape[-1]*2]
# x2 = x[..., freqs.shape[-1]*2:]
# orig_shape = x1.shape
# x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
# x1 = torch.view_as_complex(x1) * freqs
# x1 = torch.view_as_real(x1).flatten(-2)
# x1 = x1.view(orig_shape)
# return torch.cat([x1.type_as(x), x2], dim=-1)
class attentiona(nn.Module):
def __init__(self, dims: int, head: int):
super().__init__()
self.head = head
self.dims = dims
self.head_dim = dims // head
self.pad_token = 0
self.zmin = 1e-6
self.zmax = 1e-5
self.zero = nn.Parameter(torch.tensor(1e-4, device=device, dtype=dtype), requires_grad=False)
self.q = nn.Linear(dims, dims)
self.kv = nn.Linear(dims, dims * 2, bias=False)
self.out = nn.Linear(dims, dims)
self.lna = nn.LayerNorm(dims)
self.lnb = nn.LayerNorm(dims // head)
self.rope = rotary(dims, head)
def forward(self, x, xa = None, mask = None, positions = None):
zero = self.zero
q = self.q(x)
k, v = self.kv(self.lna(x if xa is None else xa)).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b c (h d) -> b h c d', h = self.head), (q, k, v))
scale = q.shape[-1] ** -0.5
qk = einsum('b h k d, b h q d -> b h k q', self.lnb(q), self.lnb(k)) * scale
scale = torch.ones_like(k[:, :, :, 0])
zero = torch.clamp(F.softplus(zero), 1e-6, 1e-5)
scale[k[:, :, :, 0].float() == 0] = zero
if there_is_a(mask):
i, j = qk.shape[-2:]
mask = torch.ones(i, j, device = q.device, dtype = torch.bool).triu(j - i + 1)
qk = qk.masked_fill(mask, -torch.finfo(qk.dtype).max) * scale.unsqueeze(-2).expand(qk.shape)
qk = F.sigmoid(qk)
qk = qk * scale.unsqueeze(-2)
qk = taylor_softmax(qk, order=2)
wv = einsum('b h k q, b h q d -> b h k d', qk, v)
wv = rearrange(wv, 'b h c d -> b c (h d)')
out = self.out(wv)
return out
class tgate(nn.Module):
def __init__(self, dims, num_types=1):
super().__init__()
self.gates = nn.ModuleList([nn.Sequential(nn.Linear(dims, dims), nn.Sigmoid()) for _ in range(num_types)])
self.classifier = nn.Sequential(nn.Linear(dims, num_types), nn.Softmax(dim=-1))
def forward(self, x):
types = self.classifier(x)
gates = torch.stack([gate(x) for gate in self.gates], dim=-1)
cgate = torch.sum(gates * types.unsqueeze(2), dim=-1)
return cgate
class residual(nn.Module):
def __init__(self, dims: int, head: int, layer = 2, act = "silu"):
super().__init__()
self.lna = nn.LayerNorm(dims, bias=False)
self.atta = attentiona(dims, head)
self.dsl = skip_layer(dims, head, layer=2)
self.tgate = tgate(dims, num_types=1)
self.mlp = nn.Sequential(nn.Linear(dims, dims*4), get_activation(act), nn.Linear(dims*4, dims))
def forward(self, x: Tensor, xa = None, mask = None, positions=None):
# log = {}
x = x + self.atta(self.lna(x), xa=xa, mask=mask)
x, _ = self.dsl(self.lna(x), xa=xa, mask=mask) # _ outputs logs for jumps
x = x + self.tgate(x)
x = x + self.mlp(self.lna(x))
# print(results['jumps'])
# log['jumps'] = l
return x
class skip_layer(nn.Module):
def __init__(self, dims, head, layer, threshold=0.1):
super().__init__()
self.layers = nn.ModuleList()
self.layer = layer
self.threshold = threshold
self.dims = dims
self.head = head
self.head_dim = dims // head
self.attention_module = attentiona(dims, head)
self.node_predictors = nn.ModuleList([
nn.Sequential(
nn.LayerNorm(dims),
nn.Linear(dims, 1),
nn.Sigmoid()
) for _ in range(layer)
])
for i in range(layer):
self.layers.append(nn.ModuleDict({
'ln': nn.LayerNorm(dims),
'gate': nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid()),
'adapter': nn.Linear(dims, dims) if i % 2 == 0 else None
}))
self.policy_net = nn.Sequential(
nn.Linear(dims, 128),
nn.ReLU(),
nn.Linear(128, 3))
self.jump_weights = nn.Parameter(torch.tensor([0.1, 0.05, 0.01]))
n_mlp = dims * 4
self.mlp_gate = nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid())
self.mlp = nn.Sequential(nn.Linear(dims, n_mlp), nn.GELU(), nn.Linear(n_mlp, dims))
self.mlp_ln =nn.LayerNorm(dims)
self.working_memory = nn.Parameter(torch.zeros(1, 1, dims))
self.memory_gate = nn.Sequential(nn.Linear(dims, 1), nn.Sigmoid())
def _calculate_shared_attention(self, x, mask=None):
return self.attention_module(x, xa=x, mask=None)
def predict_node_importance(self, x, layer_idx):
importance = self.node_predictors[layer_idx](x)
return (importance > self.threshold).float()
def forward(self, x, xa=None, mask=None):
batch, ctx = x.shape[:2]
working_memory = self.working_memory.expand(batch, -1, -1)
original_x = x
pooled_representation = x.mean(dim=1)
policy_logits = self.policy_net(pooled_representation)
policy = F.softmax(policy_logits, dim=-1)
jump_history = []
i = 0
while i < self.layer:
layer = self.layers[i]
node_importance = self.predict_node_importance(x, i)
if node_importance.mean() < 0.2 and i > 0:
i += 1
jump_history.append(i)
continue
norm_x = layer['ln'](x)
importance_mask_base = node_importance.unsqueeze(1).contiguous()
combined_custom_mask = None
if mask is None:
combined_custom_mask = importance_mask_base
else:
combined_custom_mask = mask.contiguous() * importance_mask_base
if node_importance.mean() > 0.3:
attn_output = self._calculate_shared_attention(norm_x, mask=combined_custom_mask.contiguous())
if layer['adapter'] is not None:
attn_output = layer['adapter'](attn_output)
gate_value = layer['gate'](norm_x)
x = x + gate_value * attn_output
memory_gate = self.memory_gate(x)
working_memory = memory_gate * working_memory + (1 - memory_gate) * x.mean(dim=1, keepdim=True)
jump_prob = policy[:, 1] if i < self.layer - 1 else torch.zeros_like(policy[:, 1])
should_jump = (torch.rand_like(jump_prob) < jump_prob).any()
if should_jump:
jump_length = torch.multinomial(policy, 1)[:, 0].max().item() + 1
i_next = min(i + jump_length, self.layer - 1)
skip_weight = self.jump_weights[min(jump_length-1, 2)]
x = x + skip_weight * original_x + (1-skip_weight) * working_memory
i = i_next
jump_history.append(i)
else:
i += 1
mlp_importance = self.mlp_gate(x)
mlp_output = self.mlp(self.mlp_ln(x))
x = x + mlp_importance * mlp_output
return x, {'jumps': jump_history}
class processor(nn.Module):
def __init__(self, tokens, mels, ctx, dims, head, head_dim, layer, act):
super(processor, self).__init__()
act_fn = get_activation(act)
self.ln = nn.LayerNorm(dims)
self.token = nn.Embedding(tokens, dims)
self.audio = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
self.positions = nn.Parameter(torch.empty(ctx, dims), requires_grad=True)
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
self.encoder = nn.Sequential(
nn.Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
modal = False
self.block = nn.ModuleList([residual(dims, head, layer, act_fn) for _ in range(layer)]) if modal else None
self.res = residual(dims, head, layer, act_fn)
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def init_memory(self, batch):
return torch.zeros(batch, 1, self.dims).to(next(self.parameters()).device)
def update_memory(self, x, working_memory):
return (x + working_memory) / 2
def forward(self, x, xa, enc=None, sequential=False, modal=False, blend=False, kv_cache=None) -> Tensor:
mask = self.mask[:x.shape[1], :x.shape[1]]
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = (self.token(x.long()) + self.positions[offset : offset + x.shape[-1]])
xa = self.encoder(xa).permute(0, 2, 1)
xa = xa + self.audio(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)
xa = self.res(xa, None, None)
x = self.res(x, None, mask)
x = self.res(x, xa, None)
if blend:
if sequential:
y = x
else:
a = torch.sigmoid(self.blend)
x = a * x + (1 - a) * y
if modal:
for block in chain(self.block or []):
xm = block(torch.cat([x, xa], dim=1), mask=mask) if modal else None
x = block(xm[:, :x.shape[1]], xm[:, x.shape[1]:], mask=None) if modal else x
if blend:
if sequential:
y = x
else:
a = torch.sigmoid(self.blend)
x = a * x + (1 - a) * y
x = nn.functional.dropout(x, p=0.001, training=self.training)
x = self.ln(x)
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
return x
class Model(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.processor = processor(
tokens=param.tokens,
mels=param.mels,
ctx=param.ctx,
dims=param.dims,
head=param.head,
head_dim=param.head_dim,
layer=param.layer,
act=param.act)
def forward(self, labels=None, input_ids=None, pitch=None, pitch_tokens=None, spectrogram=None, waveform=None):
x = input_ids
xa = AorB(pitch, spectrogram)
enc = {}
if spectrogram is not None:
enc["spectrogram"] = spectrogram
if waveform is not None:
enc["waveform"] = waveform
if pitch is not None:
enc["pitch"] = pitch
if pitch_tokens is not None:
enc["ptokens"] = pitch_tokens
logits = self.processor(x, xa, enc)
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
return {"logits": logits, "loss": loss}
def _init_weights(self, module):
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "processor": 0, "attentiona": 0, "Residual": 0}
for name, module in self.named_modules():
if isinstance(module, nn.RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
if isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
self.init_counts["LayerNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, nn.Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, residual):
self.init_counts["Residual"] += 1
elif isinstance(module, processor):
self.init_counts["processor"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")