RedDino-base

RedDino is a self-supervised Vision Transformer foundation model specifically designed for red blood cell (RBC) image analysis.
It leverages a tailored version of the DINOv2 framework, trained on a meticulously curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources.
This model excels at extracting robust, general-purpose features for downstream hematology tasks such as shape classification, morphological subtype recognition, and batch-effectโ€“robust analysis.

Unlike general-purpose models pretrained on natural images, RedDino incorporates hematology-specific augmentations, architectural tweaks, and RBC-tailored data preprocessing, enabling state-of-the-art performance on multiple RBC benchmarks.

๐Ÿง  Developed by Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, and Carsten Marr
๐Ÿฅ University of Cagliari & Helmholtz Munich
๐Ÿ“„ Preprint: arXiv:2508.08180


Model Details

  • Architecture: ViT-base, patch size 14
  • SSL framework: DINOv2 (customized for RBC morphology)
  • Pretraining dataset: 1.25M RBC images from 18 datasets
  • Embedding size: 768
  • Applications: RBC morphology classification, feature extraction, batch-effectโ€“robust analysis

Example Usage

from PIL import Image
from torchvision import transforms
import timm
import torch

# Load model from Hugging Face Hub
model = timm.create_model("hf_hub:Snarcy/RedDino-base", pretrained=True)
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Load and preprocess image
image = Image.open("path/to/rbc_image.jpg").convert("RGB")
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225]),
])
input_tensor = transform(image).unsqueeze(0).to(device)

# Extract features
with torch.no_grad():
    embedding = model(input_tensor)

๐Ÿ“ Citation

If you use this model, please cite the following paper:

RedDino: A foundation model for red blood cell analysis
Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr โ€” 2025
Preprint: arXiv:2508.08180. https://arxiv.org/abs/2508.08180

@misc{zedda2025reddinofoundationmodelred,
      title={RedDino: A foundation model for red blood cell analysis}, 
      author={Luca Zedda and Andrea Loddo and Cecilia Di Ruberto and Carsten Marr},
      year={2025},
      eprint={2508.08180},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2508.08180}, 
}
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including Snarcy/RedDino-base

Evaluation results