StupidGame's picture
Upload 1941 files
baa8e90
import numpy as np
from torch import Tensor
import folder_paths
from .control import load_controlnet, convert_to_advanced, ControlWeights, ControlWeightType,\
LatentKeyframeGroup, TimestepKeyframe, TimestepKeyframeGroup, is_advanced_controlnet
from .control import StrengthInterpolation as SI
from .weight_nodes import DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights, SoftControlNetWeights, CustomControlNetWeights, \
SoftT2IAdapterWeights, CustomT2IAdapterWeights
from .latent_keyframe_nodes import LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode
from .deprecated_nodes import LoadImagesFromDirectory
from .logger import logger
class TimestepKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"cn_weights": ("CONTROL_NET_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"inherit_missing": ("BOOLEAN", {"default": True}, ),
"guarantee_usage": ("BOOLEAN", {"default": True}, ),
"mask_optional": ("MASK", ),
#"interpolation": ([SI.LINEAR, SI.EASE_IN, SI.EASE_OUT, SI.EASE_IN_OUT, SI.NONE], {"default": SI.NONE}, ),
}
}
RETURN_NAMES = ("TIMESTEP_KF", )
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
start_percent: float,
strength: float=1.0,
cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
null_latent_kf_strength: float=0.0,
inherit_missing=True,
guarantee_usage=True,
mask_optional=None,
interpolation: str=SI.NONE,):
control_net_weights = control_net_weights if control_net_weights else cn_weights
prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
if not prev_timestep_keyframe:
prev_timestep_keyframe = TimestepKeyframeGroup()
else:
prev_timestep_keyframe = prev_timestep_keyframe.clone()
keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, interpolation=interpolation, null_latent_kf_strength=null_latent_kf_strength,
control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, guarantee_usage=guarantee_usage,
mask_hint_orig=mask_optional)
prev_timestep_keyframe.add(keyframe)
return (prev_timestep_keyframe,)
class ControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def load_controlnet(self, control_net_name,
timestep_keyframe: TimestepKeyframeGroup=None
):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, timestep_keyframe)
return (controlnet,)
class DiffControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def load_controlnet(self, control_net_name, model,
timestep_keyframe: TimestepKeyframeGroup=None
):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, timestep_keyframe, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)
class AdvancedControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
# copy, convert to advanced if needed, and set cond
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent))
if is_advanced_controlnet(c_net):
# apply optional parameters and overrides, if provided
if timestep_kf is not None:
c_net.set_timestep_keyframes(timestep_kf)
if latent_kf_override is not None:
c_net.latent_keyframe_override = latent_kf_override
if weights_override is not None:
c_net.weights_override = weights_override
# verify weights are compatible
c_net.verify_all_weights()
# set cond hint mask
if mask_optional is not None:
mask_optional = mask_optional.clone()
# if not in the form of a batch, make it so
if len(mask_optional.shape) < 3:
mask_optional = mask_optional.unsqueeze(0)
c_net.set_cond_hint_mask(mask_optional)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
# NODE MAPPING
NODE_CLASS_MAPPINGS = {
# Keyframes
"TimestepKeyframe": TimestepKeyframeNode,
"LatentKeyframe": LatentKeyframeNode,
"LatentKeyframeGroup": LatentKeyframeGroupNode,
"LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
"LatentKeyframeTiming": LatentKeyframeInterpolationNode,
# Conditioning
"ACN_AdvancedControlNetApply": AdvancedControlNetApply,
# Loaders
"ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
"DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
# Weights
"ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
"ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
"SoftControlNetWeights": SoftControlNetWeights,
"CustomControlNetWeights": CustomControlNetWeights,
"SoftT2IAdapterWeights": SoftT2IAdapterWeights,
"CustomT2IAdapterWeights": CustomT2IAdapterWeights,
"ACN_DefaultUniversalWeights": DefaultWeights,
# Image
"LoadImagesFromDirectory": LoadImagesFromDirectory
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Keyframes
"TimestepKeyframe": "Timestep Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframe": "Latent Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeGroup": "Latent Keyframe Group πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeBatchedGroup": "Latent Keyframe Batched Group πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeTiming": "Latent Keyframe Interpolation πŸ›‚πŸ…πŸ…’πŸ…",
# Conditioning
"ACN_AdvancedControlNetApply": "Apply Advanced ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
# Loaders
"ControlNetLoaderAdvanced": "Load Advanced ControlNet Model πŸ›‚πŸ…πŸ…’πŸ…",
"DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) πŸ›‚πŸ…πŸ…’πŸ…",
# Weights
"ScaledSoftControlNetWeights": "Scaled Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights πŸ›‚πŸ…πŸ…’πŸ…",
"SoftControlNetWeights": "ControlNet Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"CustomControlNetWeights": "ControlNet Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
"SoftT2IAdapterWeights": "T2IAdapter Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"CustomT2IAdapterWeights": "T2IAdapter Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_DefaultUniversalWeights": "Force Default Weights πŸ›‚πŸ…πŸ…’πŸ…",
# Image
"LoadImagesFromDirectory": "Load Images [DEPRECATED] πŸ›‚πŸ…πŸ…’πŸ…"
}